【題目】已知函數(shù) (k為常數(shù),e=2.71828…是自然對(duì)數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與x軸平行.
(1)求k的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)設(shè)g(x)=(x2+x)f′(x),其中f′(x)為f(x)的導(dǎo)函數(shù).證明:對(duì)任意x>0,g(x)<1+e2

【答案】
(1)解:∵f′(x)= ,x∈(0,+∞),

且y=f(x)在(1,f(1))處的切線與x軸平行,

∴f′(1)=0,

∴k=1;


(2)解:由(1)得:f′(x)= (1﹣x﹣xlnx),x∈(0,+∞),

令h(x)=1﹣x﹣xlnx,x∈(0,+∞),

當(dāng)x∈(0,1)時(shí),h(x)>0,當(dāng)x∈(1,+∞)時(shí),h(x)<0,

又ex>0,

∴x∈(0,1)時(shí),f′(x)>0,

x∈(1,+∞)時(shí),f′x)<0,

∴f(x)在(0,1)遞增,在(1,+∞)遞減;


(3)證明:∵g(x)=(x2+x)f′(x),

∴g(x)= (1﹣x﹣xlnx),x∈(0,+∞),

x>0,g(x)<1+e21﹣x﹣xlnx< (1+e2),

由(2)h(x)=1﹣x﹣xlnx,x∈(0,+∞),

∴h′(x)=﹣(lnx﹣lne2),x∈(0,+∞),

∴x∈(0,e2)時(shí),h′(x)>0,h(x)遞增,

x∈(e2,+∞)時(shí),h(x)<0,h(x)遞減,

∴h(x)max=h(e2)=1+e2,

∴1﹣x﹣xlnx≤1+e2

設(shè)m(x)=ex﹣(x+1),

∴m′(x)=ex﹣1=ex﹣e0

∴x∈(0,+∞)時(shí),m′(x)>0,m(x)遞增,

∴m(x)>m(0)=0,

∴x∈(0,+∞)時(shí),m(x)>0,

>1,

∴1﹣x﹣xlnx≤1+e2 (1+e2),

x>0,g(x)<1+e2


【解析】(1)先求出f′(x)= ,x∈(0,+∞),由y=f(x)在(1,
f(1))處的切線與x軸平行,得f′(1)=0,從而求出k=1;(2)由(Ⅰ)得:f′(x)= (1﹣x﹣xlnx),x∈(0,+∞),令h(x)=1﹣x﹣xlnx,x∈(0,+∞),求出h(x)的導(dǎo)數(shù),從而得f(x)在(0,1)遞增,在(1,+∞)遞減;(3)因g(x)= (1﹣x﹣xlnx),x∈(0,+∞),由(Ⅱ)h(x)=1﹣x﹣xlnx,x∈(0,+∞),得1﹣x﹣xlnx≤1+e2 , 設(shè)m(x)=ex﹣(x+1),得m(x)>m(0)=0,進(jìn)而1﹣x﹣xlnx≤1+e2 (1+e2),問題得以證明.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減,以及對(duì)函數(shù)的最大(小)值與導(dǎo)數(shù)的理解,了解求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)/span>將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,直線E交于A、B兩點(diǎn),且,其中O為原點(diǎn).

1)求拋物線E的方程;

2)點(diǎn)C坐標(biāo)為,記直線CA、CB的斜率分別為,證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD是邊長(zhǎng)為3的正方形,DE平面ABCD,AFDE,DE=3AF,BE與平面ABCD所成角為60°.

(1)求二面角F-BE-D的余弦值;

(2)設(shè)點(diǎn)M是線段BD上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)M的位置,使得AM平面BEF,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣1|+|x﹣2|
(1)求不等式f(x)≤3的解集;
(2)若不等式||a+b|﹣|a﹣b||≤|a|f(x)(a≠0,a∈R,b∈R)恒成立,求實(shí)數(shù)x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

命題b2-4ac<0,則方程ax2+bx+c=0(a≠0)沒有實(shí)根的否命題;

命題△ ABC,AB=BC=CA,△ ABC為等邊三角形的逆命題;

命題a>b>0,a>b>0”的逆否命題;

命題m>1,mx2-2(m+1)x+(m-3)<0的解集為R”的逆命題.

其中真命題的序號(hào)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x+ |+|x﹣a|(a>0).
(1)證明:f(x)≥2;
(2)若f(3)<5,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C1:x2+y2=b2與橢圓C2:=1(a>b>0),若在橢圓C2上存在一點(diǎn)P,使得由點(diǎn)P所作的圓C1的兩條切線互相垂直,則橢圓C2的離心率的取值范圍是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;②設(shè)有一個(gè)回歸方程=3-5x,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;③線性回歸方程x+必過();④曲線上的點(diǎn)與該點(diǎn)的坐標(biāo)之間具有相關(guān)關(guān)系;⑤在一個(gè)2×2列聯(lián)表中,由計(jì)算得K2=13.079,則其兩個(gè)變量之間有關(guān)系的可能性是90%.其中錯(cuò)誤的個(gè)數(shù)是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=sin2x的圖象向右平移φ(0<φ< )個(gè)單位后得到函數(shù)g(x)的圖象.若對(duì)滿足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min= ,則φ=( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案