12.函數(shù)y=f(x-1)的圖象關于直線x=1對稱,當x∈(-∞,0)時,f(x)+xf′(x)<0成立,若a=20.2•f(20.2),b=ln2•f(ln2),c=(log${\;}_{\frac{1}{2}}$$\frac{1}{4}$)•f(log${\;}_{\frac{1}{2}}$$\frac{1}{4}$),則a,b,c的大小關系是b>a>c.

分析 先判斷函數(shù)f(x)為偶函數(shù),得出函數(shù)F(x)=x•f(x)為奇函數(shù),再根據(jù)F(x)的奇偶性和單調性比較a,b,c的大。

解答 解:∵函數(shù)y=f(x-1)的圖象關于直線x=1對稱,
∴函數(shù)y=f(x)的圖象關于直線x=0對稱(y軸),
所以,y=f(x)為偶函數(shù),
構造函數(shù)F(x)=x•f(x),F(xiàn)(x)為奇函數(shù),
根據(jù)題意,F(xiàn)'(x)=f(x)+xf'(x)<0恒成立,
所以F(x)在(-∞,0)上單調遞減,
因而F(x)在(0,+∞)上單調遞減,
而a=F(20.2),b=F(ln2),c=F($lo{g}_{\frac{1}{2}}\frac{1}{4}$),
∵ln2∈(0,1),20.2∈(1,2),$lo{g}_{\frac{1}{2}}\frac{1}{4}$=2,
∴0<ln2<20.2<$lo{g}_{\frac{1}{2}}\frac{1}{4}$,因此,b>a>c.
故答案為:b>a>c.

點評 本題主要考查了運用函數(shù)的單調性比較數(shù)值的大小,涉及應用導數(shù)研究函數(shù)的單調性,函數(shù)奇偶性的性質應用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知定義域為R的函數(shù)$f(x)=\frac{{a-{2^x}}}{{b+{2^x}}}$是奇函數(shù)
(1)求a,b的值.
(2)判斷f(x)的單調性,并用定義證明
(3)若存在t∈R,使f(k+t2)+f(4t-2t2)<0成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.為了解籃球愛好者小李的投籃命中率與打籃球時間之間的關系,下表記錄了小李某月1號到5號每天打籃球時間x單位:小時)與當天投籃命中率y之間的關系:
時間x12345
命中率y0.40.50.60.60.4
(1)求小李這5天的平均投籃命中率;
(2)用線性回歸分析的方法,預測小李該月6號打6小時籃球的投籃命中率.$\left\{\begin{array}{l}\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}\\ \hat a=\overline y-\hat b\overline x\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設函數(shù)f(x)=x|x-a|+b,a,b∈R
(I)當a>0時,討論函數(shù)f(x)的零點個數(shù);
(Ⅱ)若對于給定的實數(shù)a(-$\frac{1}{3}$≤a<0),存在實數(shù)b,使不等式f(x)≤x+$\frac{1}{2}$對于任意x∈[2a-1,2a+1]恒成立.試將最大實數(shù)b表示為關于a的函數(shù)m(a),并求m(a)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.如圖,已知正三角形ABC內接于半徑為2的圓O,E為線段BC上一動點,延長AE交圓O于點F,則$\overrightarrow{FA}$•$\overrightarrow{FB}$的取值范圍是[-6,0].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知A{x|y=x2-2x-3},B={y|y=-x2-2x+3},則A∩B=(-∞,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知f(x)是定義在R上的不恒為零的函數(shù),且對任意x,y∈R滿足下列關系式:f(x•y)=xf(y)+yf(x),且f(2)=2.
(1)求f(0),f(1)的值;
(2)證明:f(x)為奇函數(shù);
(3)證明:$\frac{f({2}^{n})}{{2}^{n}}$-$\frac{f({2}^{n-1})}{{2}^{n-1}}$=1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知變量x,y滿足線性約束條件$\left\{\begin{array}{l}{y≥a(x-3)}\\{x+y≤3}\\{x≥1}\end{array}\right.$其中a>0,當z=2x+y的最小值為1時,a等于(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.等比數(shù)列{an}的前n項和為Sn,若a2=3,S3=13,則log3a3的值為( 。
A.0B.2C.0或2D.1或2

查看答案和解析>>

同步練習冊答案