【題目】已知函數(shù).

(1)求函數(shù)的極大值;

(2)若函數(shù)在區(qū)間 其中上存在極值,求實(shí)數(shù)的取值范圍;

(3)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

【答案】1函數(shù)處取得極大值 23

【解析】試題分析:(1)先求導(dǎo)數(shù),再求導(dǎo)函數(shù)零點(diǎn),列表分析導(dǎo)函數(shù)符號變化規(guī)律,進(jìn)而確定函數(shù)極大值(2)由題意1必在區(qū)間內(nèi),解不等式可得實(shí)數(shù)的取值范圍;(3)先分離變量將不等式恒成立問題轉(zhuǎn)化為對應(yīng)函數(shù)最值問題,再利用導(dǎo)數(shù)研究函數(shù)最值,即得實(shí)數(shù)的取值范圍.

試題解析:解:(1)函數(shù)的定義域?yàn)?/span>, ,

當(dāng)時(shí), , 上單調(diào)遞增

當(dāng)時(shí), , 上單調(diào)遞減

函數(shù)處取得極大值

2函數(shù)在區(qū)間 上存在極值

, 解得

當(dāng)時(shí),不等式,即為

,則

,則

上單調(diào)遞增

, 從而

上單調(diào)遞增

實(shí)數(shù)的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最大值為 的圖象關(guān)于軸對稱.

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)設(shè),是否存在區(qū)間,使得函數(shù)在區(qū)間上的值域?yàn)?/span>?若存在,求實(shí)數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們把b除a的余數(shù)r記為r=abmodb,例如4=9bmod5,如圖所示,若輸入a=209,b=77,則循環(huán)體“r←abmodb”被執(zhí)行了次.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列中, ,其前項(xiàng)和為,等比數(shù)列的各項(xiàng)均為正數(shù), ,且, .

(1)求數(shù)列的通項(xiàng)公式;

(2)令,設(shè)數(shù)列的前項(xiàng)和為,求)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ).

(1)若的圖象在點(diǎn)處的切線方程為,求在區(qū)間上的最大值和最小值;

(2)若在區(qū)間上不是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=a﹣ ,
(1)若x∈[ ,+∞),①判斷函數(shù)g(x)=f(x)﹣2x的單調(diào)性并加以證明;②如果f(x)≤2x恒成立,求a的取值范圍;
(2)若總存在m,n使得當(dāng)x∈[m,n]時(shí),恰有f(x)∈[2m,2n],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各函數(shù)在其定義域中,既是奇函數(shù),又是增函數(shù)的是(
A.y=x+1
B.y=﹣x3
C.y=﹣
D.y=x|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若Ai(i=1,2,3,…,n)是△AOB所在平面內(nèi)的點(diǎn),且 = ,給出下列說法:
·(1)| |=| |=| |=…=| |
·(2)| |的最小值一定是| |
·(3)點(diǎn)A和點(diǎn)Ai一定共線
·(4)向量 在向量 方向上的投影必定相等
其中正確的個(gè)數(shù)是(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),在處取得極值.

1)求函數(shù)的解析式;

2)求函數(shù)上的最值.

查看答案和解析>>

同步練習(xí)冊答案