13.已知P是△ABC所在平面內(nèi)一點(diǎn),$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow 0$,現(xiàn)將一粒紅豆隨機(jī)撒在△ABC內(nèi),則紅豆落在△PBC內(nèi)的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

分析 根據(jù)P是△ABC所在平面內(nèi)一點(diǎn),$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow 0$,得點(diǎn)P是△ABC的重心.再根據(jù)幾何概型公式,將△PBC的面積與△ABC的面積相除可得本題的答案.

解答 解:∵P是△ABC所在平面內(nèi)一點(diǎn),$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow 0$,
∴P是△ABC的重心,
∴點(diǎn)P到BC的距離等于A到BC的距離的$\frac{1}{3}$.
∴S△PBC=$\frac{1}{3}$S△ABC,
將一粒黃豆隨機(jī)撒在△ABC內(nèi),黃豆落在△PBC內(nèi)的概率為P=$\frac{1}{3}$.
故選B.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是幾何概型概率計(jì)算公式,計(jì)算出滿足條件和所有基本事件對(duì)應(yīng)的幾何量,是解答的關(guān)鍵,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=x2+2x-3,g(x)=$\frac{klnx}{x}$,且函數(shù)f(x)與g(x)的圖象在x=1處的切線相同.
(1)求k的值;
(2)令F(x)=$\left\{\begin{array}{l}{|f(x)|(x≤1)}\\{g(x)(x>1)}\end{array}\right.$,若函數(shù)y=F(x)-m存在3個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,已知四棱錐P-ABCD的底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,直線PB和平面ABCD所成的角為45°,E為PC的中點(diǎn).
(I)求證:PA∥平面BED
( II)求二面角C-BE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相同的單位長(zhǎng)度,已知直線l的參數(shù)方程是$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=3+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程是ρcos2θ=2sinθ.
(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),點(diǎn)M為AB的中點(diǎn),點(diǎn)P的極坐標(biāo)為$(\sqrt{2},\frac{π}{4})$,求|PM|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.直線y=kx+3被圓(x-2)2+(y-3)2=4截得的弦長(zhǎng)為$2\sqrt{3}$,則直線的斜率為( 。
A.$\sqrt{3}$B.$±\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$±\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=|x|,則下列與函數(shù)y=f(x)相等的函數(shù)是(2)(4);
(1)g(x)=($\sqrt{x}$)2;(2)h(x)=$\sqrt{{x}^{2}}$;(3)s(x)=x;(4)y=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{\frac{1}{3}{x}^{2}-\frac{8}{3}x+5,x≥2}\end{array}\right.$,若函數(shù)y=f(x)-m(m∈R)有四個(gè)零點(diǎn)x1,x2,x3,x4,則x1x2x3x4的取值范圍是(  )
A.(7,12)B.(12,15)C.(12,16)D.(15,16)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列函數(shù)在(0,+∞)上是增函數(shù)的是( 。?
A.y=ln(x-2)B.y=-$\sqrt{x}$C.y=x2D.y=$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知拋物線x2=4y,圓C:x2+(y-2)2=4,點(diǎn)M(x0,y0),(x0>0,y0>4)為拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn)M的圓C的兩切線,設(shè)其斜率分別為k1,k2
(Ⅰ)求證:k1+k2=$\frac{2{x}_{0}({y}_{0}-2)}{{{x}_{0}}^{2}-4}$,k1•k2=$\frac{{{y}_{0}}^{2}-4{y}_{0}}{{{x}_{0}}^{2}-4}$.
(Ⅱ)求過(guò)點(diǎn)M的圓的兩切線與x軸圍成的三角形面積S的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案