A. | $\frac{25π}{4}$ | B. | $\frac{125π}{4}$ | C. | $\frac{225π}{16}$ | D. | $\frac{625π}{16}$ |
分析 根據(jù)幾何體的特征,判定外接球的球心,求出球的半徑,即可求出球的表面積.
解答 解:根據(jù)題意知,△ABC是一個(gè)直角三角形,其面積為6.其所在球的小圓的圓心在斜邊AC的中點(diǎn)上,設(shè)小圓的圓心為Q,
若四面體ABCD的體積的最大值,由于底面積S△ABC不變,高最大時(shí)體積最大,
所以,DQ與面ABC垂直時(shí)體積最大,最大值為$\frac{1}{3}$×S△ABC×DQ=10,
即$\frac{1}{3}$×6×DQ=10,∴DQ=5,如圖.
設(shè)球心為O,半徑為R,則在直角△AQO中,
OA2=AQ2+OQ2,即R2=2.52+(5-R)2,∴R=$\frac{25}{8}$,
則這個(gè)球的表面積為:S=4π($\frac{25}{8}$)2=$\frac{625π}{16}$.
故選:D.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是球內(nèi)接多面體,球的表面積,其中分析出何時(shí)四面體ABCD的體積的最大值,是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,1) | B. | (0,1) | C. | [1,3) | D. | (1,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=-1,y=-$\frac{1}{2}$ | B. | x=1,y=$\frac{1}{2}$ | C. | x=-1,y=$\frac{1}{2}$ | D. | x=1,y=-$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{6}$ | B. | -6 | C. | 6 | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com