10.已知函數(shù)f(x)=$\left\{\begin{array}{l}3+{log_2}(x-1),x>0\\{x^2}-x-1,x≤0\end{array}$,若f(a)=5,則a的取值集合為(  )
A.{-2,3,5}B.{-2,3}C.{-2,5}D.{3,5}

分析 當(dāng)a>0時,f(a)=3+log2(a-1)=5,當(dāng)a≤0時,f(a)=a2-a-1=5.由此能求出a的取值集合.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}3+{log_2}(x-1),x>0\\{x^2}-x-1,x≤0\end{array}$,f(a)=5,
∴當(dāng)a>0時,f(a)=3+log2(a-1)=5,解得a=5,
當(dāng)a≤0時,f(a)=a2-a-1=5,解得a=-2或a=3(舍).
∴a的取值集合為{-2,5}.
故選:C.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖1是某同學(xué)進(jìn)入高三后12次數(shù)學(xué)測試成績的莖葉圖,這12次成績記為A1,A2,…,A12,圖2是統(tǒng)計莖葉圖中成績在一定范圍內(nèi)次數(shù)的算法流程圖,那么該算法流程輸出的結(jié)果是( 。
A.5B.7C.106D.114

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=xlnx-ax2-x.
(1)當(dāng)a=$\frac{1}{2}$時,證明:f(x)在定義域上為減函數(shù);
(2)若a∈R,討論函數(shù)f(x)的零點情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,且經(jīng)過點D(2$\sqrt{2}$,2$\sqrt{2}$).
(1)求C的方程;
(2)若P(x0,y0)是第一象限C上異于點D的動點,過原點向圓(x-x02+(y-y02=8作切線交C于G,H兩點,設(shè)直線OG,OH的斜率分別為kOG,kOH,證明:2kOGkOH+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若x,y滿足約束條件$\left\{\begin{array}{l}2x+y-4≥0\\ 2x-3y-3≤0\\ x-4y+4≤0\end{array}\right.$,則z=x+2y的最小值為( 。
A.$\frac{19}{8}$B.4C.5D.$\frac{46}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某數(shù)學(xué)老師對所任教的兩個班級各抽取30名學(xué)生進(jìn)行測試,分?jǐn)?shù)分布如表:
分?jǐn)?shù)區(qū)間45
[0,30)0.10.2
[30,60)0.20.2
[60,90)0.30.4
[90,120)0.20.1
[120,150]0.20.1
(1)若成績120分以上為優(yōu)秀,求從乙班參加測試的成績在90分以上(含90分)的學(xué)生中,隨機(jī)任取2名學(xué)生,恰有1人為優(yōu)秀的概率;
(2)根據(jù)以上數(shù)據(jù)完成下面的2×2列聯(lián)表,則犯錯概率小于0.1的前提下,是否有足夠的把握認(rèn)為學(xué)生的數(shù)學(xué)成績優(yōu)秀與否和班級有關(guān)?
優(yōu)秀不優(yōu)秀總計
甲班62430
乙班32730
總計95160
參考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
下面的臨界值供參考:
k02.0722.7063.8415.0246.6357.87910.828
P(K2≥k00.150.100.050.0250.0100.0050.001

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)圖象如圖所示,則f(x)的解析式可能是( 。
A.f(x)=lnx-sinxB.f(x)=lnx+cosxC.f(x)=lnx+sinxD.f(x)=lnx-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.作出函數(shù)y═-$\frac{1}{x+1}$的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在平面直角坐標(biāo)系中xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\sqrt{2}cosθ}\\{y=\sqrt{2}sinθ}\end{array}\right.$(θ為參數(shù)),則曲線C是( 。
A.關(guān)于x軸對稱的圖形B.關(guān)于y軸對稱的圖形
C.關(guān)于原點對稱的圖形D.關(guān)于直線y=x對稱的圖形

查看答案和解析>>

同步練習(xí)冊答案