精英家教網 > 高中數學 > 題目詳情

【題目】某影院共有1000個座位,票價不分等次,根據該影院的經營經驗,當每張票價不超過10元時,票可全部售出,當每張票價高于10元時,每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院一個合適的票價,符合的基本條件是:

為了方便找零和算賬,票價定為1元的整數倍;

影院放映一場電影的成本費為5750元,票房收入必須高于成本支出.

1)設定價為)元,凈收入為元,求關于的表達式;

2)每張票價定為多少元時,放映一場的凈收入最多?此時放映一場的凈收入為多少元?

【答案】1;(2)每張票價定為22元時凈收入最多,最大值為8330.

【解析】

1)根據的范圍,分別求出函數表達式;(2)分別求出兩個函數的最大值,從而綜合得到答案.

1)電影院共有1000個座位,電影院放一場電影的成本費用支出為5750元,票房的收入

必須高于成本支出,

,票價最低為6元,

票價不超過10元時:

,的整數),

票價高于10元時:

,

,

解得:,

的整數);

所以

2)對于,的整數),

時:最大為4250元,

對于,的整數);

時,最大,

票價定為22元時:凈收人最多為8830元.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油

D. 某城市機動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,AB=AC=1,BAC=90°,異面直線A1B與B1C1所成的角為60°.

(1)求該三棱柱的體積;

(2)設D是BB1的中點,求DC1與平面A1BC1所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數。

(1)若曲線在點處的切線與直線垂直,求的單調遞減區(qū)間和極小值(其中為自然對數的底數);

(2)若對任意恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,直線相切于點.

(1)求橢圓的方程;

(2)若直線與橢圓交于不同的兩點,,與直線相交于,均不重合).證明:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為奇函數.

1)求a的值,并證明R上的增函數;

2)若關于t的不等式f(t22t)f(2t2k)0的解集非空,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市每年春節(jié)前后,由于大量的煙花炮竹的燃放,空氣污染較為嚴重.該市環(huán)保研究所對近年春節(jié)前后每天的空氣污染情況調查研究后發(fā)現,每天空氣污染的指數隨時刻()變化的規(guī)律滿足表達式,,其中為空氣治理調節(jié)參數,且

1)令,求的取值范圍;

2)若規(guī)定每天中的最大值作為當天的空氣污染指數,要使該市每天的空氣污染指數不超過5,試求調節(jié)參數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知動直線l:m+3x-m+2y+m=0與圓C:x-32y-42=9.

1求證:無論m為何值,直線l總過定點A,并說明直線l與圓C總相交.

2m為何值時,直線l被圓C所截得的弦長最?請求出該最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,右頂點為,

(1)求該橢圓的標準方程;

(2)(文)若是橢圓上的動點,過P作垂直于x軸的垂線,垂足為M,延長MP至N,使得P恰好為MN中點,求點N的軌跡方程;

若已知點,是橢圓上的動點,求線段中點的軌跡方程;

查看答案和解析>>

同步練習冊答案