7.將兩名男生、兩名女生發(fā)到三個不同的班取作經(jīng)驗(yàn)交流,每個班至少分到一名學(xué)生,且兩名女生不能分到同一個班,則不同的分法的種數(shù)為( 。
A.18B.24C.30D.36

分析 由題意可以分兩類,2名男生一組,兩名女生各一組,或1名男生和一名女生一組,另外的一男一女各一組,根據(jù)分類計數(shù)原理可得.

解答 解:由題意可知,4人只能分為;2名男生一組,兩名女生各一組,或1名男生和一名女生一組,另外的一男一女各一組,
故有A33(1+${C}_{2}^{1}{C}_{2}^{1}$)=30種,
故選:C.

點(diǎn)評 本題考查了分組分配問題,關(guān)鍵是分組,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等差數(shù)列{an}的公差d=2,其前n項(xiàng)和為Sn,數(shù)列{bn}的首項(xiàng)b1=2,其前n項(xiàng)和為Tn,滿足${2^{({\sqrt{S_n}+1})}}$=Tn+2,n∈N*
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{|anbn-14|}的前n項(xiàng)和Wn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x||x-1|≤1,x∈R},${B}=\left\{{x\left|{\sqrt{x}≤2,x∈{Z}}\right.}\right\}$,則A∩B=( 。
A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列關(guān)于實(shí)數(shù)a,b的不等式中,不恒成立的是(  )
A.a2+b2≥2abB.a2+b2≥-2abC.${({\frac{a+b}{2}})^2}≥ab$D.${({\frac{a+b}{2}})^2}≥-ab$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知a,b,c分別是△ABC中角A,B,C的對邊長,b和c是關(guān)于x的方程x2-9x+25cosA=0的兩個根(b>c),且$({sinB+sinC+sinA})({sinB+sinC-sinA})=\frac{18}{5}sinBsinC$,則△ABC的形狀為( 。
A.等腰三角形B.銳角三角形C.直角三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)點(diǎn)P(x0,y0)是函數(shù)y=tanx與y=-x(x≠0)的圖象的一個交點(diǎn),則(x02+1)(1+cos2x0)的值為( 。
A.2B.2+$\sqrt{2}$C.2+$\sqrt{3}$D.2-$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知PA⊥矩形ABCD所在的平面,M、N分別為AB、PC的中點(diǎn),∠PDA=45°.
(1)求證:MN∥平面PAD;
(2)求證:平面PMC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列說法正確的是( 。
A.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
B.若a,b∈R,則“ab≠0”是“a≠0”的充分不必要條件
C.命題“?x0∈R,x02+x0+1<0”的否定是“?x∈R,x2+x+1>0”
D.若“p且q”為假,則p,q全是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知sinαtanα≥0,則α的取值集合為{α|2kπ-$\frac{π}{2}$<α<2kπ+$\frac{π}{2}$或α=(2k+1)π(k∈Z)}..

查看答案和解析>>

同步練習(xí)冊答案