15.在△ABC中,角A、B、C所對的邊分別是a、b、c,已知sinB+sinC=msinA(m∈R),且a2-4bc=0.
(1)當(dāng)a=2,$m=\frac{5}{4}$時(shí),求b、c的值;
(2)若角A為銳角,求m的取值范圍.

分析 (1)sinB+sinC=msinA(m∈R),利用正弦定理可得:b+c=ma,且a2-4bc=0.a(chǎn)=2,$m=\frac{5}{4}$時(shí),代入解出即可得出.
(2)利用余弦定理、不等式的解法即可得出.

解答 解:(1)由題意得b+c=ma,a2-4bc=0.
 當(dāng)$a=2,m=\frac{5}{4}$時(shí),$b+c=\frac{5}{2}$,bc=1.
解得$\left\{\begin{array}{l}b=2\\ c=\frac{1}{2}\end{array}\right.或\left\{\begin{array}{l}b=\frac{1}{2}\\ c=2\end{array}\right.$.
(2)$cosA=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}=\frac{{{{({b+c})}^2}-2bc-{a^2}}}{2bc}=\frac{{{m^2}{a^2}-\frac{a^2}{2}-{a^2}}}{{\frac{a^2}{2}}}=2{m^2}-3∈(0,1)$.
∴$\frac{3}{2}<{m^2}<2$,又由b+c=ma可得m>0,所以$\frac{{\sqrt{6}}}{2}<m<\sqrt{2}$.

點(diǎn)評 本題考查了正弦定理余弦定理、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=|x+2017|-|x-2016|的最大值為( 。
A.-1B.1C.4033D.-4033

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.F是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點(diǎn),過F作某一漸近線的垂線,分別與兩條漸近線相交于A,B兩點(diǎn),若$\frac{{|{AF}|}}{{|{BF}|}}=\frac{1}{2}$,則雙曲線的離心率為$\frac{2}{3}\sqrt{3}$或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,在正方形ABCD中,M,N分別是BC,CD的中點(diǎn),若$\overrightarrow{AC}=λ\overrightarrow{AM}+μ\overrightarrow{BN}$,則λ+μ的值為( 。
A.$\frac{8}{5}$B.$\frac{5}{8}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在空間直角坐標(biāo)系O-xyz中,一個(gè)四面體的四個(gè)頂點(diǎn)坐標(biāo)分別是(0,0,0),(0,3,1),(2,3,0),(2,0,1),則它的外接球的表面積為14π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在復(fù)平面內(nèi),復(fù)數(shù)z對應(yīng)的點(diǎn)是Z(1,-2),則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$=1+2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.《周髀算經(jīng)》中給出了弦圖,所謂弦圖是由四個(gè)全等的直角三角形和中間一個(gè)小正方形拼成一個(gè)大的正方形,若圖中直角三角形兩銳角分別為α、β,且小正方形與大正方形面積之比為4:9,則cos(α-β)的值為( 。
A.$\frac{5}{9}$B.$\frac{4}{9}$C.$\frac{2}{3}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.將一根長為10米的木棒截成三段,則每段木棒長不低于1米的概率為(  )
A.$\frac{8}{25}$B.$\frac{16}{25}$C.$\frac{49}{100}$D.$\frac{49}{200}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.(x-2)3(x+1)4的展開式中x2的系數(shù)為-6.

查看答案和解析>>

同步練習(xí)冊答案