(本小題滿分10分)
已知一條曲線上的點(diǎn)到定點(diǎn)的距離是到定點(diǎn)距離的二倍,求這條曲線的方程.

試題分析:解:設(shè)M(x,y)是曲線上任意的一點(diǎn),點(diǎn)M在曲線上的條件是
.                   -------4分
由兩點(diǎn)間距離公式,上式用坐標(biāo)表示為

兩邊平方并化簡得所求曲線方程
                ------10分
點(diǎn)評(píng):求解步驟:1,建立坐標(biāo)系,設(shè)出所求點(diǎn)坐標(biāo),2,列出關(guān)于動(dòng)點(diǎn)的關(guān)系式,3,將關(guān)系式轉(zhuǎn)化為點(diǎn)的坐標(biāo)表示,4,整理化簡,5,驗(yàn)證是否有不滿足題意要求的點(diǎn)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)
在平面內(nèi),已知橢圓的兩個(gè)焦點(diǎn)為,橢圓的離心率為 ,點(diǎn)是橢圓上任意一點(diǎn), 且,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)以橢圓的上頂點(diǎn)為直角頂點(diǎn)作橢圓的內(nèi)接等腰直角三角形,這樣的等腰直角三角形是否存在?若存在請(qǐng)說明有幾個(gè)、并求出直角邊所在直線方程?若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知為坐標(biāo)原點(diǎn),點(diǎn)分別在軸上運(yùn)動(dòng),且=8,動(dòng)點(diǎn)滿足 =,設(shè)點(diǎn)的軌跡為曲線,定點(diǎn)為直線交曲線于另外一點(diǎn)
(1)求曲線的方程;
(2)求 面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點(diǎn)A(,0)作橢圓的弦,弦中點(diǎn)的軌跡仍是橢圓,記為,若的離心率分別為,則的關(guān)系是(     )。
A.B.=2
C.2D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,F(xiàn)1,F(xiàn)2是雙曲線的左、右焦點(diǎn),過F1的直線l與C的左、右兩支分別交于A,B兩點(diǎn).若|AB|:|BF2|:|AF2|=3:4:5,則雙曲線的離心率為
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,橢圓的中心在坐標(biāo)原點(diǎn)0,頂點(diǎn)分別是A1, A2, B1, B2,焦點(diǎn)分別為F1 ,F2,延長B1F2 與A2B2交于P點(diǎn),若為鈍角,則此橢圓的離心率的取值范圍為
A.(0,B.(,1)
C.(0,D.(,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分) 已知直線L:y=x+1與曲線C:交于不同的兩點(diǎn)A,B;O為坐標(biāo)原點(diǎn)。
(1)若,試探究在曲線C上僅存在幾個(gè)點(diǎn)到直線L的距離恰為?并說明理由;
(2)若,且a>b,,試求曲線C的離心率e的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線:的焦點(diǎn)為,、是拋物線上異于坐標(biāo)原點(diǎn)的不同兩點(diǎn),拋物線在點(diǎn)處的切線分別為、,且相交于點(diǎn).

(1) 求點(diǎn)的縱坐標(biāo); 
(2) 證明:、三點(diǎn)共線;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)過點(diǎn)作直線與拋物線相交于兩點(diǎn),圓

(1)若拋物線在點(diǎn)處的切線恰好與圓相切,求直線的方程;
(2)過點(diǎn)分別作圓的切線,試求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案