【題目】已知函數(shù)f(x)=4cosxsin(x)+a的最大值為2.
(1)求實數(shù)a的值;
(2)在給定的直角坐標系上作出函數(shù)f(x)在[0,π]上的圖象:
(3)求函數(shù)f(x)在[,]上的零點,
【答案】(1);(2)作圖見解析;(3)零點為和.
【解析】
(1)利用正弦的和角公式,以及輔助角公式化簡為標準型正弦函數(shù),根據(jù)其最大值,即可求得參數(shù);
(2)根據(jù)(1)中所求,列表、描點,即可求得函數(shù)在區(qū)間上的圖象;
(3)求出在上的零點,再與取交集即可求得結果.
(1)f(x)=4cosxsin(x)+a=4cosx(sinxcosx)+a
=2sinxcosx+2cos2x+a
sin2x+cos2x+a+1=2sin(2x)+a+1
則f(x)的最大值為2+a+1=2,得a=﹣1.
(2)由(1)可得
列表如下:
用“五點法”畫出函數(shù)f(x)在區(qū)間[0,π]的簡圖,如圖所示;
(3)由得2xkπ,k∈Z,
則x,k∈Z,
由,得,即k=0或k=1,
當k=0時,x,當k=1時,x,
即函數(shù)在[,]上的零點為和.
科目:高中數(shù)學 來源: 題型:
【題目】風景秀美的寶湖畔有四棵高大的銀杏樹,記作A,B,P,Q,湖岸部分地方圍有鐵絲網(wǎng)不能靠近.欲測量P,Q兩棵樹和A,P兩棵樹之間的距離,現(xiàn)可測得A,B兩點間的距離為100 m,∠PAB=75°,∠QAB=45°,∠PBA=60°,∠QBA=90°,如圖所示.則P,Q兩棵樹和A,P兩棵樹之間的距離各為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面ABCD為梯形,,則在面PBC內(nèi)
A. 一定存在與CD平行的直線
B. 一定存在與AD平行的直線
C. 一定存在與AD垂直的直線
D. 不存在與CD垂直的直線
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)當時,求曲線在點處的切線方程;
(2)討論函數(shù)的單調區(qū)間;
(3)求證:若函數(shù)在處取得極值,則對恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“劍橋學派”創(chuàng)始人之一數(shù)學家哈代說過:“數(shù)學家的造型,同畫家和詩人一樣,也應當是美麗的”;古希臘數(shù)學家畢達哥拉斯創(chuàng)造的“黃金分割”給我們的生活處處帶來美;我國古代數(shù)學家趙爽創(chuàng)造了優(yōu)美“弦圖”.“弦圖”是由四個全等的直角三角形與一個小正方形拼成的一個大正方形,如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為,則等于( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左,右頂點分別為右焦點為,直線是橢圓在點處的切線.設點是橢圓上異于的動點,直線與直線的交點為,且當時, 是等腰三角形.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設橢圓的長軸長等于,當點運動時,試判斷以為直徑的圓與直線的位置關系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)、兩種元件,其質量按測試指標劃分為:大于或等于為正品,小于為次品.現(xiàn)從一批產(chǎn)品中隨機抽取這兩種元件各件進行檢測,檢測結果記錄如下:
B |
由于表格被污損,數(shù)據(jù)、看不清,統(tǒng)計員只記得,且、兩種元件的檢測數(shù)據(jù)的平均值相等,方差也相等.
(1)求表格中與的值;
(2)從被檢測的件種元件中任取件,求件都為正品的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一條動直線3(m+1)x+(m-1)y-6m-2=0,
(1)求證:直線恒過定點,并求出定點P的坐標;
(2)若直線與x、y軸的正半軸分別交于A,B兩點,O為坐標原點,是否存在直線滿足下列條件:①△AOB的周長為12;②△AOB的面積為6,若存在,求出方程;若不存在,請說明理由.
(3)若直線與x、y軸的正半軸分別交于A,B兩點,當取最小值時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某次考試后,對全班同學的數(shù)學成績進行整理,得到表:
分數(shù)段 | ||||
人數(shù) | 5 | 15 | 20 | 10 |
將以上數(shù)據(jù)繪制成頻率分布直方圖后,可估計出本次考試成績的中位數(shù)是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com