分析 (1)曲線C:ρ-2sinθ=0可化為:ρ2-2ρsinθ=0,故曲線C的直角坐標(biāo)方程為:x2+y2-2y=0,配方可得C的標(biāo)準(zhǔn)方程;
根據(jù)直線l過點(diǎn)M(1,0),傾斜角為$\frac{2π}{3}$.得直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+tcos\frac{2π}{3}\\ y=tsin\frac{2π}{3}\end{array}\right.$(t為參數(shù)),化簡(jiǎn)可得答案;
(2)設(shè)A、B對(duì)應(yīng)的參數(shù)分別為t1,t2,則|AM|+|MB|=|t1|+|t2|=|t1+t2|,進(jìn)而可得答案.
解答 (本題滿分10分)
解:(1)曲線C:ρ-2sinθ=0可化為:ρ2-2ρsinθ=0,
故曲線C的直角坐標(biāo)方程為:x2+y2-2y=0,
即x2+(y-1)2=1…(2分)
直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+tcos\frac{2π}{3}\\ y=tsin\frac{2π}{3}\end{array}\right.$(t為參數(shù))
即$\left\{\begin{array}{l}x=1-\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù))…(5分)
(2)設(shè)A、B對(duì)應(yīng)的參數(shù)分別為t1,t2
把直線l的參數(shù)方程代入曲線方程得 ${(1-\frac{1}{2}t)^2}+{(\frac{{\sqrt{3}}}{2}t-1)^2}=1$
整理得${t^2}-(\sqrt{3}+1)t+1=0$
∴$\left\{\begin{array}{l}{t_1}+{t_2}=\sqrt{3}+1\\{t_1}•{t_2}=1\end{array}\right.$
∵t1-t2>0
∴$|{AM}|+|{MB}|=|{t_1}|+|{t_2}|=|{{t_1}+{t_2}}|=\sqrt{3}+1$…(10分)
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是圓的極坐標(biāo)方程,直線的參數(shù)方程,直線參數(shù)方程中參數(shù)的幾何意義,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2016 | B. | 1680 | C. | 1344 | D. | 1008 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -2 | C. | 0或-2 | D. | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com