【題目】已知函數(shù)f(x)=alnx+x2+bx+1在點(diǎn)(1,f(1))處的切線方程為4x﹣y﹣12=0.
(1)求函數(shù)f(x)的解析式;
(2)求f(x)的單調(diào)區(qū)間和極值.
【答案】
(1)解:求導(dǎo)f′(x)= +2x+b,由題意得:
f′(1)=4,f(1)=﹣8,
則 ,解得 ,
所以f(x)=12lnx+x2﹣10x+1
(2)解:f(x)定義域?yàn)椋?,+∞),
f′(x)= ,
令f′(x)>0,解得:x<2或x>3,
所以f(x)在(0,2)遞增,在(2,3)遞減,在(3,+∞)遞增,
故f(x)極大值=f(2)=12ln2﹣15,
f(x)極小值=f(3)=12ln3﹣20
【解析】(1)求出函數(shù)的導(dǎo)數(shù),計(jì)算f′(1),f(1),得到關(guān)于a,b的方程組,求出a,b的值,從而求出f(x)的解析式即可;(2)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,△ABC為正三角形,AB⊥AD,AC⊥CD,PC= AC,平面PAC⊥平面ABCD.
(1)點(diǎn)E在棱PC上,試確定點(diǎn)E的位置,使得PD⊥平面ABE;
(2)求二面角A﹣PD﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是某廠生產(chǎn)某種產(chǎn)品的過程中記錄的幾組數(shù)據(jù),其中表示產(chǎn)量(單位:噸),表示生產(chǎn)中消耗的煤的數(shù)量(單位:噸).
(1)試在給出的坐標(biāo)系下作出散點(diǎn)圖,根據(jù)散點(diǎn)圖判斷,在與中,哪一個(gè)方程更適合作為變量關(guān)于的回歸方程模型?(給出判斷即可,不需要說明理由)
(2)根據(jù)(1)的結(jié)果以及表中數(shù)據(jù),建立變量關(guān)于的回歸方程.并估計(jì)生產(chǎn)噸產(chǎn)品需要準(zhǔn)備多少噸煤.參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一商場(chǎng)對(duì)每天進(jìn)店人數(shù)和商品銷售件數(shù)進(jìn)行了統(tǒng)計(jì)對(duì)比,得到如下表格:
其中=1,2,3,4,5,6,7.
(1)以每天進(jìn)店人數(shù)為橫軸,每天商品銷售件數(shù)為縱軸,畫出散點(diǎn)圖;
(2)求線性回歸方程;(結(jié)果保留到小數(shù)點(diǎn)后兩位)
(參考數(shù)據(jù):=3 245, =25, =15.43, =5 075)
(3)預(yù)測(cè)進(jìn)店人數(shù)為80人時(shí),商品銷售的件數(shù).(結(jié)果保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= (a>0)的導(dǎo)函數(shù)y=f′(x)的兩個(gè)零點(diǎn)為0和3.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)f(x)的極大值為 ,求函數(shù)f(x)在區(qū)間[0,5]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時(shí),xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從參加某次知識(shí)競(jìng)賽的同學(xué)中,選取60名同學(xué)將其成績(jī)(百分制,均為整數(shù))分成, , , , , 六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題:
(1)求分?jǐn)?shù)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)從頻率分布直方圖中,估計(jì)本次考試成績(jī)的中位數(shù);
(3)若從第1組和第6組兩組學(xué)生中,隨機(jī)抽取2人,求所抽取2人成績(jī)之差的絕對(duì)值大于10的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中.己知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ=4.
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)系方程;
(2)直線l與曲線C相交于A、B兩點(diǎn),求∠AOB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 =1(a>b>0)經(jīng)過點(diǎn)P(﹣2,0)與點(diǎn)(1,1).
(1)求橢圓的方程;
(2)過P點(diǎn)作兩條互相垂直的直線PA,PB,交橢圓于A,B.
①證明直線AB經(jīng)過定點(diǎn);
②求△ABP面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com