18.兩個(gè)函數(shù)的圖象關(guān)于直線y=x對稱,若其中一個(gè)函數(shù)是y=-$\sqrt{x+5}$(-5≤x≤0),則另一個(gè)函數(shù)的表達(dá)式為y=x2-5(-$\sqrt{5}$≤x≤0).

分析 由兩個(gè)函數(shù)圖象關(guān)于直線y=x對稱知,這兩個(gè)函數(shù)互為反函數(shù),由反函數(shù)的定義知,互換x、y的位置即可.

解答 解:∵兩個(gè)函數(shù)的圖象關(guān)于直線y=x對稱
∴這兩個(gè)函數(shù)互為反函數(shù)
∵y=-$\sqrt{x+5}$(-5≤x≤0),
得x=y2-5
交換x、y得:y=x2-5(-$\sqrt{5}$≤x≤0)
∴另一個(gè)函數(shù)的表達(dá)式為y=x2-5(-$\sqrt{5}$≤x≤0)

點(diǎn)評 本題考查反函數(shù)概念,即交換x、y的位置即可.注意定義域

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)n,m∈N,n>m,則下列等式中不正確的是(  )
A.${C}_{n}^{m}$=${C}_{n}^{n-m}$B.${C}_{m}^{m}$+${C}_{m}^{m-1}$=${C}_{m+1}^{m}$
C.${C}_{5}^{1}$+${C}_{5}^{2}$=${C}_{5}^{3}$D.${C}_{n+1}^{m}$=${C}_{n}^{m-1}$+${C}_{n-1}^{m}$+${C}_{n-1}^{m-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.給出下列等式:
①cos80°cos20°+sin80°sin20°=$\frac{1}{2}$;
②sin13°cos17°-cos13°sin17°=$\frac{1}{2}$;
③cos70°cos25°+cos65°cos20°=$\frac{\sqrt{2}}{2}$;
④sin140°cos20°+sin50°sin20°=$\frac{\sqrt{3}}{2}$.
其中成立的( 。
A.4個(gè)B.2個(gè)C.3個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知$f(x)={log_2}x,g(x)=9-{x^2},若y=f[{g(x)}]$
(Ⅰ)求函數(shù)y=f[g(x)]的解析式;
(Ⅱ)求f[g(1)],f[g(-1)]的值;
(Ⅲ)判別并證明函數(shù)y=f[g(x)]的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某紡織廠的一個(gè)車間有技術(shù)工人m名(m∈N*),編號分別為1、2、3、…、m;有n臺(n∈N*)織布機(jī),編號分別為1、2、3、…、n.定義記號aij:若第i名工人操作了第j號織布機(jī),規(guī)定aij=1;否則,若第i名工人沒有操作第j號織布機(jī),規(guī)定aij=0.則等式a41+a42+a43+…+a4n=5的實(shí)際意義是:第4名工人共操作了5臺織布機(jī).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3=3,S7=28.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)若bn=(-1)n•$\frac{{a}_{2n+1}}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.正項(xiàng)數(shù)列{an}前n項(xiàng)和為Sn,且$a_n^2=4{S_n}-2{a_n}-1$(n∈N+
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若${b_n}=\frac{{4{{(-1)}^{n+1}}{a_{n+1}}}}{{({a_n}+1)({a_{n+1}}+1)}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,證明:T2n-1>1>T2n(n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.?dāng)?shù)列{2n-1}的前n項(xiàng)組成集合An={1,3,7,…,2n-1},從集合An中任取k(k=1,2,…,n)個(gè)數(shù),其所有可能的k個(gè)數(shù)的乘積的和為Tk(若只取一個(gè)數(shù),則規(guī)定乘積為此數(shù)本身),記Sn=T1+T2+…+Tn.例如當(dāng)n=1時(shí),A1={1},T1=1,S1=1;當(dāng)n=2時(shí),A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7.則Sn=${2}^{\frac{n(n+1)}{2}}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的前n項(xiàng)和Sn滿足an+2SnSn-1=0(n≥2),a1=1,
(1)求證數(shù)列數(shù)列$\left\{{\frac{1}{S_n}}\right\}$是等差數(shù)列
(2)求an

查看答案和解析>>

同步練習(xí)冊答案