12.設(shè)n,m∈N,n>m,則下列等式中不正確的是(  )
A.${C}_{n}^{m}$=${C}_{n}^{n-m}$B.${C}_{m}^{m}$+${C}_{m}^{m-1}$=${C}_{m+1}^{m}$
C.${C}_{5}^{1}$+${C}_{5}^{2}$=${C}_{5}^{3}$D.${C}_{n+1}^{m}$=${C}_{n}^{m-1}$+${C}_{n-1}^{m}$+${C}_{n-1}^{m-1}$

分析 根據(jù)組合數(shù)的定義與性質(zhì),對選項中的等式進行分析、判定即可.

解答 解:對于A,根據(jù)組合數(shù)的性質(zhì),${C}_{n}^{m}$=${C}_{n}^{n-m}$,等式正確;
對于B,根據(jù)組合數(shù)的性質(zhì),${C}_{m}^{m}$+${C}_{m}^{m-1}$=${C}_{m+1}^{m}$,等式正確;
對于C,根據(jù)組合數(shù)的性質(zhì),${C}_{5}^{1}$+${C}_{5}^{2}$=${C}_{6}^{2}$,原等式錯誤;
對于D,根據(jù)組合數(shù)的性質(zhì),${C}_{n}^{m-1}$+${C}_{n-1}^{m}$+${C}_{n-1}^{m-1}$=${C}_{n}^{m-1}$+${C}_{n}^{m}$=${C}_{n+1}^{m}$,等式正確.
故選:C.

點評 本題考查了組合數(shù)公式的定義與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在直角坐標系xOy中,M(-2,0).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,A(ρ,θ)為曲線C上一點,B(ρ,θ+$\frac{π}{3}$),且|BM|=1.
(Ⅰ)求曲線C的直角坐標方程;
(Ⅱ)求|OA|2+|MA|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖1所示,在矩形ABCD中,AB=2,AE=$\frac{1}{4}$AB.若將矩形ABCD沿對角線AC折起一部分后(如圖2),D點在平面ABC的正投影恰好能與E重合.
(Ⅰ)求線段AD的長;
(Ⅱ)線段CD(包括端點)上是否存在一點F,使得二面角E-BF-D的大小為30°,若存在,求$\frac{DF}{CD}$的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若一等差數(shù)列共3n項,前n項和為A,中間n項和為B,后n項和為C,M=B2-AC,N=($\frac{A-C}{2}$)2,則M和N的大小關(guān)系為M=N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.學(xué)校要安排一場文藝晚會的11個節(jié)目的演出順序,除第1個節(jié)目和最后1個節(jié)自己確定外,還有4個音樂節(jié)目,3個舞蹈節(jié)目,2個曲藝節(jié)目,目3個舞蹈節(jié)目要求不能相鄰,2個曲藝節(jié)目出場前后順序已定,共有多少種不同排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)f(x)=logsinα(x2-mx+3m)(α為銳角)在區(qū)間[2,+∞)上單凋遞減,則實數(shù)m的取值圍是( 。
A.(0,4]B.(-4,4]C.(-∞,4]D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.《九章算術(shù)》中的“兩鼠穿墻題”是我國數(shù)學(xué)的古典名題:“今有垣厚若干尺,兩鼠對穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,問何日相逢,各穿幾何?”題意是:“有兩只老鼠從墻的兩邊打洞穿墻,大老鼠第一天進一尺,以后每天加倍;小老鼠第一天也進一尺,以后每天減半.”如果墻足夠厚,Sn為前n天兩只老鼠打洞長度之和,則Sn=${2}^{n}-\frac{1}{{2}^{n-1}}+1$尺.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知向量$\overrightarrow{a}$=(sinx,$\frac{3}{4}$),$\overrightarrow$=(cosx,-1).
(1)當(dāng)$\overrightarrow{a}$∥$\overrightarrow$時,求$\frac{sin2x+2si{n}^{2}x}{1-tanx}$的值;
(2)設(shè)函數(shù)f(x)=2($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$,求當(dāng)0≤x≤$\frac{π}{2}$時,函數(shù)f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.兩個函數(shù)的圖象關(guān)于直線y=x對稱,若其中一個函數(shù)是y=-$\sqrt{x+5}$(-5≤x≤0),則另一個函數(shù)的表達式為y=x2-5(-$\sqrt{5}$≤x≤0).

查看答案和解析>>

同步練習(xí)冊答案