【題目】雙曲線的左右焦點分別為,左右項點分別為,點是上的動點.
(1)若點在第一象限, 且,求點的坐標(biāo);
(2)點與不重合,直線分別交軸于兩點,求證: ;
(3)若點在左支上,是否存在實數(shù),使得到直線的距離與之比為定值?若存在,求出的值,若不存在,說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】科研人員在對人體脂肪含量和年齡之間關(guān)系的研究中,獲得了一些年齡和脂肪含量的簡單隨機樣本數(shù)據(jù),如下表:
(年齡/歲) | 26 | 27 | 39 | 41 | 49 | 53 | 56 | 58 | 60 | 61 |
(脂肪含量/%) | 14.5 | 17.8 | 21.2 | 25.9 | 26.3 | 29.6 | 31.4 | 33.5 | 35.2 | 34.6 |
根據(jù)上表的數(shù)據(jù)得到如下的散點圖.
(1)根據(jù)上表中的樣本數(shù)據(jù)及其散點圖:
(i)求;
(i)計算樣本相關(guān)系數(shù)(精確到0.01),并刻畫它們的相關(guān)程度.
(2)若關(guān)于的線性回歸方程為,求的值(精確到0.01),并根據(jù)回歸方程估計年齡為50歲時人體的脂肪含量.
附:參考數(shù)據(jù):,,,,,,
參考公式:相關(guān)系數(shù)
回歸方程中斜率和截距的最小二乘估計公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求曲線y=f(x)在點(1,f(1))處的切線與兩坐標(biāo)軸圍成的三角形的面積;
(2)若f(x)≥1,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱為“類函數(shù)”.
(1)已知函數(shù),試判斷是否為“類函數(shù)”?并說明理由;
(2)設(shè)是定義在上的“類函數(shù)”,求是實數(shù)的最小值;
(3)若 為其定義域上的“類函數(shù)”,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市環(huán)保部門對市中心每天的環(huán)境污染情況進行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合污染指數(shù)與時刻(時)的關(guān)系為,,其中是與氣象有關(guān)的參數(shù),且.若用每天的最大值為當(dāng)天的綜合污染指數(shù),并記作.
(1)令,,求的取值范圍;
(2)求的表達式,并規(guī)定當(dāng)時為綜合污染指數(shù)不超標(biāo),求當(dāng)在什么范圍內(nèi)時,該市市中心的綜合污染指數(shù)不超標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個數(shù)是( )
①命題“若,則,中至少有一個不小于2”的逆命題是真命題
②命題“設(shè),若,則或”是一個真命題
③“,”的否定是“,”
④已知,都是實數(shù),“”是“”的充分不必要條件
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點P(2,1).
(1)求橢圓C的方程,并求其離心率;
(2)過點P作x軸的垂線l,設(shè)點A為第四象限內(nèi)一點且在橢圓C上(點A不在直線l上),點A關(guān)于l的對稱點為A',直線A'P與C交于另一點B.設(shè)O為原點,判斷直線AB與直線OP的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),是的導(dǎo)函數(shù),則下列結(jié)論中錯誤的個數(shù)是( )
①函數(shù)的值域與的值域相同;
②若是函數(shù)的極值點,則是函數(shù)的零點;
③把函數(shù)的圖像向右平移個單位長度,就可以得到的圖像;
④函數(shù)和在區(qū)間內(nèi)都是增函數(shù).
A.0B.1C.2D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com