A. | 2 | B. | 2$\sqrt{2}$ | C. | 3 | D. | 2$\sqrt{3}$ |
分析 利用配方法求出圓的標(biāo)準(zhǔn)方程可得圓心和半徑,由直線l:kx+y-2=0經(jīng)過(guò)圓C的圓心(3,-1),求得k的值,可得點(diǎn)A的坐標(biāo),再利用直線和圓相切的性質(zhì)求得AB的值.
解答 解:由圓C:x2+y2-6x+2y+9=0得,(x-3)2+(y+1)2=1,
表示以C(3,-1)為圓心、半徑等于1的圓.
由題意可得,直線l:kx+y-2=0經(jīng)過(guò)圓C的圓心(3,-1),
故有3k-1-2=0,得k=1,則點(diǎn)A(0,1),
即|AC|=$\sqrt{(0-3)^{2}+(1+1)^{2}}=\sqrt{13}$.
則線段AB=$\sqrt{A{C}^{2}-{r}^{2}}=\sqrt{(\sqrt{13})^{2}-1}=2\sqrt{3}$.
故選:D.
點(diǎn)評(píng) 本題考查圓的切線長(zhǎng)的求法,解題時(shí)要注意圓的標(biāo)準(zhǔn)方程,直線和圓相切的性質(zhì)的合理運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<b<cB | B. | b<a<cC | C. | b<c<a | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
員工編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年薪(萬(wàn)元) | 3 | 3.5 | 4 | 5 | 5.5 | 6.5 | 7 | 7.5 | 8 | 50 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a1+a3≥2a2 | B. | a1+a3≤2a2 | C. | a1S3>0 | D. | a1S3<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | 16 | D. | 32 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com