20.?dāng)?shù)列{an}滿足a1=0,an+1=an+(2n-1),求an

分析 由已知利用an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1即可得出.

解答 解:∵a1=1,an+1=an+2n-1(n∈N*),
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=(2n-3)+(2n-5)+…+1+0
=$\frac{(n-1)(2n-3+1)}{2}$,
=n2-2n+1.
故答案為:n2-2n+1.

點(diǎn)評(píng) 本題考查了“累加求和”方法、等差數(shù)列的前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知直線l:kx+y-2=0(k∈R)是圓C:x2+y2-6x+2y+9=0的對(duì)稱軸,過(guò)點(diǎn)A(0,k)作圓C的一條切線,切點(diǎn)為B,則線段AB的長(zhǎng)為( 。
A.2B.2$\sqrt{2}$C.3D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)SA、SB是圓錐SO的兩條母線,O是底面圓心,底面積為100π,C是SB中點(diǎn),AC與底面所成角為45°,∠AOB=60°,求圓錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{(\frac{1}{2})}^{x},x≤1}\\{{-x}^{2}+4x-\frac{5}{2},x>1}\end{array}\right.$ 函數(shù)g(x)=$\frac{3}{2}$x-a,其中a∈R,若函數(shù)y=f(x)-g(x)恰有3個(gè)零點(diǎn),則a的取值范圍是( 。
A.(0,$\frac{15}{16}$)B.($\frac{15}{16}$,1)C.(1,$\frac{16}{15}$)D.(1,$\frac{5}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知雙曲線的兩條漸近線為y=±x,且雙曲線過(guò)點(diǎn)M(-2,3),求此雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在△ABC中,若tanA,tanB,tanC均為整數(shù),且∠A>∠B>∠C,則下列選項(xiàng)錯(cuò)誤(  )
A.∠A<80°B.∠B<60°C.∠C<50°D.∠A>65°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.${∫}_{-1}^{1}$(xsin2x+$\sqrt{x}$)dx=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)=Asin(ωx+$\frac{ωπ}{2}$)(A>0,ω>0)在區(qū)間[-$\frac{3π}{4}$,-$\frac{π}{6}$]上單調(diào)遞增,則ω的最大值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合A={x|x2-4x<0},B={x|-1≤x≤1},則A∪B=( 。
A.[-1,1]B.[-1,4)C.(0,1]D.(0,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案