17.過點(diǎn)(2,3)且與直線2x-3y-2=0平行的直線的點(diǎn)方向式方程是(  )
A.2(x-2)+3(y-3)=0B.$\frac{x-2}{-3}$=$\frac{y-3}{2}$C.3(x-2)+2(y-3)=0D.$\frac{x-2}{3}$=$\frac{y-3}{2}$

分析 所求直線的方向向量為(3,2),又經(jīng)過點(diǎn)(2,3),即可得出所求直線的點(diǎn)方向式方程.

解答 解:所求直線的方向向量為(3,2),又經(jīng)過點(diǎn)(2,3),
因此所求直線的點(diǎn)方向式方程是$\frac{x-2}{3}=\frac{y-3}{2}$.
故選:D.

點(diǎn)評(píng) 本題考查了直線的點(diǎn)方向式方程,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a2+b2-c2=ab=$\sqrt{3}$,則△ABC的面積為(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{3}{4}$C.$\frac{\sqrt{3}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)$\overrightarrow m,\overrightarrow n$是兩個(gè)不共線的向量,若$\overrightarrow{AB}=\overrightarrow m+5\overrightarrow n,\overrightarrow{BC}=-2\overrightarrow{m}+8\overrightarrow n,\overrightarrow{CD}=4\overrightarrow m+2\overrightarrow n$,則( 。
A.A,B,C三點(diǎn)共線B.A,B,D三點(diǎn)共線C.A,C,D三點(diǎn)共線D.B,C,D三點(diǎn)共線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.有下列說法:
①若向量$\overrightarrow{AB}$、$\overrightarrow{CD}$滿足|$\overrightarrow{AB}$|>|$\overrightarrow{CD}$|,且$\overrightarrow{AB}$與$\overrightarrow{CD}$方向相同,則$\overrightarrow{AB}$>$\overrightarrow{CD}$;
②|$\overrightarrow{a}$+$\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$|;
③共線向量一定在同一直線上;
④由于零向量的方向不確定,故其不能與任何向量平行;
其中正確說法的個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=2.
(1)若$\overrightarrow{a}$、$\overrightarrow$的夾角為45°,求|$\overrightarrow{a}$+$\overrightarrow$|
(2)若($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,求$\overrightarrow{a}$與$\overrightarrow$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知正項(xiàng)數(shù)列{an}的前三項(xiàng)分別為1,3,5,Sn為數(shù)列的前n項(xiàng)和,滿足:nS2n+1-(n+1)S2n=(n+1)(3n3+An2+Bn)(A,B∈R,n∈N*).
(1)求A,B的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)若數(shù)列{bn}滿足(n+1)an=$\frac{_{1}}{2}$+$\frac{_{2}}{{2}^{2}}$+…+$\frac{_{n}}{{2}^{n}}$(n∈N+),求數(shù)列{bn}的前n項(xiàng)和Tn
(參考公式:12+22+…+n2=$\frac{1}{6}$n(n+1)(2n+1))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給定命題:p:x<3,q:$\frac{3-x}{x-2}$>0,則p是q的( 。
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,內(nèi)角A、B、C的對(duì)邊分別是a、b、c,若a+b≥2c,則∠C的最大度數(shù)是( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.化簡(jiǎn):
(1)$\frac{tan\frac{5π}{4}+tan\frac{5π}{12}}{1-tan\frac{5π}{12}}$;
(2)$\frac{sin(α+β)-2sinαcosβ}{2sinαsinβ+cos(α+β)}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案