12.已知|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=2.
(1)若$\overrightarrow{a}$、$\overrightarrow$的夾角為45°,求|$\overrightarrow{a}$+$\overrightarrow$|
(2)若($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,求$\overrightarrow{a}$與$\overrightarrow$的夾角.

分析 (1)計算|$\overrightarrow{a}+\overrightarrow$|2,再開方即可;
(2)令($\overrightarrow{a}-\overrightarrow$)$•\overrightarrow{a}$=0,計算$\overrightarrow{a}•\overrightarrow$,代入夾角公式計算.

解答 解:(1)$\overrightarrow{a}•\overrightarrow$=$\sqrt{2}×2×cos45°$=2.
∴($\overrightarrow{a}+\overrightarrow$)2=${\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow+{\overrightarrow}^{2}$=2+4+4=10,
∴|$\overrightarrow{a}+\overrightarrow$|2=$\sqrt{10}$.
(2)∵($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,∴($\overrightarrow{a}-\overrightarrow$)$•\overrightarrow{a}$=0,
即$\overrightarrow{a}•\overrightarrow={\overrightarrow{a}}^{2}=2$,
∴cos<$\overrightarrow{a},\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=$\frac{\sqrt{2}}{2}$.
∴$\overrightarrow{a}$與$\overrightarrow$的夾角為45°.

點評 本題考查了平面向量的數(shù)量積運算,夾角公式,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=|2x-1|.
(1)求不等式f(x)<4;
(2)若函數(shù)g(x)=f(x)+f(x-1)的最小值為a,且m+n=a(m>0,n>0),求$\frac{{{m^2}+2}}{m}+\frac{{{n^2}+1}}{n}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.函數(shù)y=2arcsin$\sqrt{x}$的定義域為[0,1],值域為[0,π].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)y=$\sqrt{2sin(2x-\frac{π}{3})-1}$的增區(qū)間是(  )
A.$[kπ+\frac{π}{4},kπ+\frac{17π}{12}],(k∈Z)$B.$[kπ+\frac{π}{6},kπ+\frac{5π}{12}],(k∈Z)$
C.$[kπ+\frac{π}{4},kπ+\frac{5π}{12}],(k∈Z)$D.$[kπ-\frac{π}{12},kπ+\frac{5π}{12}],(k∈Z)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.每一個音都是純音合成的,純音的數(shù)字模型是函數(shù)y=Asinωt.音調(diào)、響度、音長、音色等音的四要素都與正弦函數(shù)及其參數(shù)(振幅、頻率)有關.我們聽到聲音是由許多音的結(jié)合,稱為復合音.若一個復合音的函數(shù)是y=$\frac{1}{4}$sin4x+$\frac{1}{6}$sin6x,則該復合音的周期為(  )
A.$\frac{3π}{2}$B.πC.$\frac{2π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.過點(2,3)且與直線2x-3y-2=0平行的直線的點方向式方程是( 。
A.2(x-2)+3(y-3)=0B.$\frac{x-2}{-3}$=$\frac{y-3}{2}$C.3(x-2)+2(y-3)=0D.$\frac{x-2}{3}$=$\frac{y-3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在△ABC中,角A,B,C的對邊分別為a,b,c,若a2+b2=c2+$\sqrt{2}$ab,則C=( 。
A.60°B.120°C.45°D.135°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.定義在R上的函數(shù)f(x),若對任意x1≠x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),則稱f(x)為“H函數(shù)”,給出下列函數(shù):①y=-x2+x+1;②y=3x-2(sinx-cosx);③y=ex+1;④f(x)=$\left\{\begin{array}{l}{|lnx|,x≠0}\\{0,x=0}\end{array}\right.$其中“H函數(shù)”的個數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若C18m=C183m-6,則m=3或6.

查看答案和解析>>

同步練習冊答案