6.求和:(a-1)+(a2-2)+…+(an-n),(a≠0)

分析 采用分組求和,根據(jù)等比數(shù)列性質(zhì)當(dāng)a=1和a≠1,分別進(jìn)行求和.

解答 解:原式=(a+a2+…+an)-(1+2+…+n),
=$(a+{a^2}+…+{a^n})-\frac{n(n+1)}{2}$,
=$\left\{\begin{array}{l}\frac{{a(1-{a^n})}}{1-a}-\frac{n(n+1)}{2}(a≠1)\\ \frac{n}{2}-\frac{n^2}{2}(a=1)\end{array}\right.$,

點(diǎn)評(píng) 本題考查數(shù)列的分組求和,考查等比數(shù)列和等差數(shù)列前n項(xiàng)和公式,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知方程組$\left\{\begin{array}{l}{{y}^{2}=2x(1)}\\{y=x+m(2)}\end{array}\right.$有兩組實(shí)數(shù)解x$\left\{\begin{array}{l}{x={x}_{1}}\\{y={y}_{1}}\end{array}\right.$和$\left\{\begin{array}{l}{x={x}_{2}}\\{y={y}_{2}}\end{array}\right.$,且$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$=$\frac{3}{2}$,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)y=x5-xex在區(qū)間(-3,3)上的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)y=4x-2的零點(diǎn)是(  )
A.($\frac{1}{2}$,0)B.2C.$\frac{1}{2}$D.(-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=1-$\frac{2}{{{2^x}+1}}$.
(1)判斷函數(shù)的奇偶性,并加以證明;
(2)證明:f(x)在(-∞,+∞)上是增函數(shù).
(3)若 f(2a+1)+f(4a-3)>0,求實(shí)數(shù)a的取值范圍.(提示:可以直接利用前兩小題的結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.某一批花生種子,如果每1粒發(fā)芽的概率為$\frac{4}{5}$,那么播下4粒種子至少有2粒發(fā)芽的概率是$\frac{608}{625}$.(請(qǐng)用分?jǐn)?shù)表示結(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知p:?x∈R,2x>m(x2+1),q:?x0∈R,x02+2x0-m-1=0,
(1)若q是真命題,求m的范圍;
(2)若p∧(¬q)為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.方程tanx=$\sqrt{2}$的解集為{x|x=kπ+arctan2,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)f(x)=x2-(${\frac{1}{2}}$)x的零點(diǎn)有( 。﹤(gè).
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案