12.已知函數(shù)f(x)=|x-1|+|x+3|.
(1)解不等式f(x)≥8;
(2)若不等式f(x)<a2-3a的解集不是空集,求實數(shù)a的取值范圍.

分析 (1)求出函數(shù)f(x)的分段函數(shù)的形式,通過解各個區(qū)間上的x的范圍去并集即可;(2)求出f(x)的最小值,得到關于a的不等式,解出即可.

解答 解:(1)f(x)=|x-1|+|x+3|=$\left\{\begin{array}{l}{-2x-2,x≤-3}\\{4,-3<x<1}\\{2x+2,x≥1}\end{array}\right.$,
當x<-3時,由-2x-2≥8,解得x≤-5;
當-3≤x≤1時,f(x)≤8不成立;
當x>1時,由2x+2≥8,解得x≥3.
所以不等式f(x)≥8的解集為{x|x≤-5或x≥3}.
(2)因為f(x)=|x-1|+|x+3|≥4,
又不等式f(x)<a2-3a的解集不是空集,
所以,a2-3a>4,所以a>4或a<-1,
即實數(shù)a的取值范圍是(-∞,-1)∪(4,+∞).

點評 本題考查了解絕對值不等式問題,函數(shù)恒成立問題,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.數(shù)列{an}滿足an=$\left\{\begin{array}{l}{2{a}_{n},0≤{a}_{n}<\frac{1}{2}}\\{2{a}_{n}-1,\frac{1}{2}≤{a}_{n}<1}\end{array}\right.$,若a1=$\frac{3}{5}$,則a2016=(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.一個幾何體的三視圖如圖所示,該幾何體的體積為(  )
A.$\frac{8}{3}$B.$\frac{4}{3}$C.$\frac{8}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知f(x)=|x-$\frac{1}{2}$|+|x-$\frac{3}{2}$|,記f(x)≤2的解集為M.
(Ⅰ)求集合M
(Ⅱ)若a∈M,試比較a2-a+1與$\frac{1}{a}$的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=m-|x-3|,不等式f(x)>1的解集為(1,5);
(1)求實數(shù)m的值;
(2)若關于x的不等式|x-a|≥f(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{{\sqrt{3}}}{2}$sin2x-cos 2x+$\frac{1}{2}$,x∈R.
(1)求函數(shù)f(x)的最大值,及取最大值時x的值;
(2)設△ABC的內(nèi)角A,B,C的對邊分別為a,b,c且c=$\sqrt{3}$,f(C)=1,若sinB=2sinA,求A,B的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設|x-2|≤a(a>0)時,不等式|x2-4|<3成立,則正數(shù)a的取值范圍為(  )
A.a>$\sqrt{7}$-2B.0<a<$\sqrt{7}$-2C.a≥$\sqrt{7}$-2D.0<a≤$\sqrt{7}$-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖,已知圓O1與O2相交于A、B兩點,△AO2B為正三角形,|AO2|=2$\sqrt{3}$,且|O1O2|=4,則陰影部分的面積為(  )
A.$\frac{4π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)是(-∞,+∞)上奇函數(shù),且f(x)的圖象關于直線x=1對稱,當x∈[-1,0]時,f(x)=-x,則f(2015)+f(2016)=1.

查看答案和解析>>

同步練習冊答案