已知函數(shù)(其中,),且函數(shù)的圖象在     點處的切線與函數(shù)的圖象在點處的切線重合.

(Ⅰ)求實數(shù)a,b的值;

(Ⅱ)若,滿足,求實數(shù)m的取值范圍;

 

【答案】

(1),(2)

【解析】

試題分析:解:(Ⅰ)∵,∴,

在點處切線的斜率,切點,

在點處切線方程為, 2分

,∴

在點處切線的斜率,切點,

在點處切線方程為, 4分

解得,. 6分

(Ⅱ)由,故上有解,

,只需. 8分

①當(dāng)時,,所以; 10分

②當(dāng)時,∵,

,∴,,∴,

,即函數(shù)在區(qū)間上單調(diào)遞減,

所以,此時. 13分

綜合①②得實數(shù)m的取值范圍是. 14分

考點:導(dǎo)數(shù)的運用

點評:解決的關(guān)鍵是對于導(dǎo)數(shù)的符號與函數(shù)單調(diào)性的關(guān)系的運用,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=·,其中=(sinωx+cosωx,cosωx), =(cosωx-sinωx,2sinωx)(ω>0).若f(x)相鄰兩對稱軸間的距離不小于.

(1)求ω的取值范圍;

(2)在△ABC中,a、b、c分別是角A、B、C的對邊,a=,b+c=3(b>c),當(dāng)ω最大時,f(A)=1,求邊b,c的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省五校聯(lián)盟高三下學(xué)期第一次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知,函數(shù),,(其中e是自然對數(shù)的底數(shù),為常數(shù)),

(1)當(dāng)時,求的單調(diào)區(qū)間與極值;

(2)是否存在實數(shù),使得的最小值為3. 若存在,求出的值,若不存在,說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省等三校高三2月月考數(shù)學(xué)文卷 題型:解答題

(本小題滿分14分)

已知函數(shù).(其中為自然對數(shù)的底數(shù)),

(Ⅰ)設(shè)曲線處的切線與直線垂直,求的值;

(Ⅱ)若對于任意實數(shù)≥0,恒成立,試確定實數(shù)的取值范圍;

(Ⅲ)當(dāng)時,是否存在實數(shù),使曲線C:在點

處的切線與軸垂直?若存在,求出的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年天津市高三十校聯(lián)考理科數(shù)學(xué) 題型:解答題

.(14分)已知函數(shù),其中

(Ⅰ)若是函數(shù)的極值點,求實數(shù)的值

(Ⅱ)若對任意的為自然對數(shù)的底數(shù))都有成立,求實數(shù)的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆云南省高一期末考試數(shù)學(xué)試卷 題型:解答題

已知函數(shù)(其中)的周期為π,且圖象上一個最低點為。

 (1)求的解析式;

(2)當(dāng)時,求的最值

 

查看答案和解析>>

同步練習(xí)冊答案