19.已知a>0,b>0,且$\sqrt{3}$為3a與3b的等比中項,則$\frac{ab}{4a+9b}$的最大值為( 。
A.$\frac{1}{24}$B.$\frac{1}{25}$C.$\frac{1}{26}$D.$\frac{1}{27}$

分析 由等比中項推導(dǎo)出a+b=1,從而$\frac{ab}{4a+9b}$=$\frac{1}{\frac{4}+\frac{9}{a}}$=$\frac{1}{(\frac{4}+\frac{9}{a})(a+b)}$=$\frac{1}{\frac{4a}+\frac{9b}{a}+13}$,由此利用基本不等式能求出$\frac{ab}{4a+9b}$的最大值.

解答 解:∵a>0,b>0,且$\sqrt{3}$為3a與3b的等比中項,
∴3a•3b=3a+b=($\sqrt{3}$)2=3,
∴a+b=1,
∴$\frac{ab}{4a+9b}$=$\frac{1}{\frac{4}+\frac{9}{a}}$=$\frac{1}{(\frac{4}+\frac{9}{a})(a+b)}$=$\frac{1}{\frac{4a}+\frac{9b}{a}+13}$≤$\frac{1}{2\sqrt{\frac{4a}•\frac{9b}{a}}+13}$=$\frac{1}{25}$.
當(dāng)且僅當(dāng)$\frac{4a}=\frac{9b}{a}$時,取等號,
∴$\frac{ab}{4a+9b}$的最大值為$\frac{1}{25}$.
故選:B.

點評 本題考查代數(shù)式最大值的求法,是中檔題,解題時要認真審題,注意等比數(shù)列的性質(zhì)、基本不等式性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ex+a-lnx.
(1)若函數(shù)f(x)在x=1處取得極值,求實數(shù)a的值;
(2)當(dāng)a≥-2時,證明:f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l1:x-2y+4=0與l2:x+y-2=0相交于點P
(1)求交點P的坐標(biāo);
(2)設(shè)直線l3:3x-4y+5=0,分別求過點P且與直線l3平行和垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|x-1|+|x+1|,M為不等式f(x)≤4的解集.
(1)求集合M.
(2)當(dāng)a,b∈M時,求證$2|{a-b}|≤\sqrt{16-7{a^2}{b^2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{{1-{2^x}}}{{{2^x}+1}}$.
(1)分別求出f(1),f(a)的值.
(2)判斷函數(shù)f(x)的奇偶性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知各項均為正數(shù)的等比數(shù)列{an}的首項a1=2,Sn為其前n項和,若5S1,S3,3S2成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log2an,${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}$,記數(shù)列{cn}的前n項和Tn.若${T_n}≤\frac{2014}{2015}$,求整數(shù)n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若不等式$\left\{\begin{array}{l}{x-y+5≥0}\\{0≤x≤3}\\{y≥a}\end{array}\right.$表示的平面區(qū)域是一個三角形,則a的取值范圍是(  )
A.(3,5)B.(5,7)C.[5,8]D.[5,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.各項為正數(shù)的等比數(shù)列{an}中,a5與a15的等比中項為2$\sqrt{2}$,則log2a4+log2a16=( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=ax3+bx+c在x=2處取得極值為c-16.
(1)求a、b的值;
(2)若c=12,求f(x)在[-3,3]上的最大及最小值.

查看答案和解析>>

同步練習(xí)冊答案