精英家教網 > 高中數學 > 題目詳情

【題目】若f(x)=x2﹣2x﹣4lnx,則f′(x)>0的解集為(
A.(0,+∞)
B.(﹣1,0)∪(2,+∞)
C.(2,+∞)
D.(﹣1,0)

【答案】C
【解析】解:由題,f(x)的定義域為(0,+∞),f′(x)=2x﹣2﹣ , 令2x﹣2﹣ >0,整理得x2﹣x﹣2>0,解得x>2或x<﹣1,
結合函數的定義域知,f′(x)>0的解集為(2,+∞).
故選:C.
【考點精析】通過靈活運用導數的加減法法則和解一元二次不等式,掌握導數加減法法則:;求一元二次不等式解集的步驟:一化:化二次項前的系數為正數;二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數的圖象;五解集:根據圖象寫出不等式的解集;規(guī)律:當二次項系數為正時,小于取中間,大于取兩邊即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某倉庫為了保持庫內的濕度和溫度,四周墻上均裝有如圖所示的自動通風設施.該設施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是個半圓,固定點E為CD的中點.△EMN是由電腦控制其形狀變化的三角通風窗(陰影部分均不通風),MN是可以沿設施邊框上下滑動且始終保持和AB平行的伸縮橫桿(MN和AB、DC不重合).
(1)當MN和AB之間的距離為1米時,求此時三角通風窗EMN的通風面積;
(2)設MN與AB之間的距離為x米,試將三角通風窗EMN的通風面積S(平方米)表示成關于x的函數S=f(x);
(3)當MN與AB之間的距離為多少米時,三角通風窗EMN的通風面積最大?并求出這個最大面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和Sn=1﹣nan(n∈N*
(1)計算a1 , a2 , a3 , a4;
(2)猜想an的表達式,并用數學歸納法證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】圓錐如圖①所示,圖②是它的正(主)視圖.已知圓的直徑為 是圓周上異于的一點, 的中點.

(I)求該圓錐的側面積S;

(II)求證:平面⊥平面;

(III)若∠CAB=60°,在三棱錐中,求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=3x﹣3ax+b ,
(1)求a,b的值;
(2)判斷f(x)的奇偶性,并用定義證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在等比數列{an}中,an>0(nN*),a1a34,且a31a2a4的等差中項,

bnlog2an1.

(1)求數列{bn}的通項公式;

(2)若數列{cn}滿足cnan1,求數列{cn}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校擬建一塊周長為400m的操場如圖所示,操場的兩頭是半圓形,中間區(qū)域是矩形,學生做操一般安排在矩形區(qū)域,為了能讓學生的做操區(qū)域盡可能大,試問如何設計矩形的長和寬?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數fx=ax2lnx。

(Ⅰ)當a=時,判斷fx)的單調性;(Ⅱ)設fx≤x3+4xlnx,在定義域內恒成立,求a的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)求函數的單調區(qū)間;

2)若上存在一點,使得成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案