【題目】某學(xué)校擬建一塊周長為400m的操場如圖所示,操場的兩頭是半圓形,中間區(qū)域是矩形,學(xué)生做操一般安排在矩形區(qū)域,為了能讓學(xué)生的做操區(qū)域盡可能大,試問如何設(shè)計矩形的長和寬?

【答案】解:設(shè)矩形的長為xm,半圓的直徑是d,中間的矩形區(qū)域面積是Sm2 , 根據(jù)題意,知
S=dx,且2x+πd=400.
∴S=dx= πd2x≤ =
當(dāng)且僅當(dāng)πd=2x=200,即x=100時等號成立,此時,d=
所以,應(yīng)設(shè)計矩形的長為100m,寬約為63.7m時,矩形面積最大
【解析】若設(shè)矩形的長為xm,半圓的直徑是d,中間的矩形區(qū)域面積是Sm2 , 則S=dx,且2x+πd=400;而S=dx= πd2x≤ ,可得最大值以及對應(yīng)的d、x的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各圖是正方體或正四面體,P,Q,R,S分別是所在棱的中點,這四個點中不共面的一個圖是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(3ωx+ ),其中ω>0
(1)若f(x+θ)是周期為2π的偶函數(shù),求ω及θ的值;
(2)若f(x)在(0, ]上是增函數(shù),求ω的最大值;
(3)當(dāng)ω= 時,將函數(shù)f(x)的圖象向右平移 個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在[0,b](b>0)上至少含有10個零點,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x)=x2﹣2x﹣4lnx,則f′(x)>0的解集為(
A.(0,+∞)
B.(﹣1,0)∪(2,+∞)
C.(2,+∞)
D.(﹣1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖y=f(x)的導(dǎo)函數(shù)的圖象,現(xiàn)有四種說法:
(1)f(x)在(﹣3,1)上是增函數(shù);
(2)x=﹣1是f(x)的極小值點;
(3)f(x)在(2,4)上是減函數(shù),在(﹣1,2)上是增函數(shù);
(4)x=2是f(x)的極小值點;
以上正確的序號為( )

A.(1)(2)
B.(2)(3)
C.(3)(4)
D.(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=ax3+bx2+cx的極小值為﹣8,其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過點 ,如圖所示,
(1)求f(x)的解析式;
(2)若對x∈[﹣3,3]都有f(x)≥m2﹣14m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)當(dāng)x≤0時,解不等式f(x)≥﹣1;
(2)寫出該函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)g(x)=f(x)﹣m恰有3個不同零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)z=(2m2+3m﹣2)+(m2+m﹣2)i,(m∈R)根據(jù)下列條件,求m值.
(1)z是實數(shù);
(2)z是虛數(shù);
(3)z是純虛數(shù);
(4)z=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調(diào)區(qū)間;

2)若上存在一點,使得成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案