為確保信息安全,需設(shè)計軟件對信息加密,發(fā)送方由明文→密文(加密),接收方由密文→明文(解密),已知加密規(guī)則為:明文:對應(yīng)密文:,當(dāng)接收方收到密文14,9,23,28時,解密得到的明文為(   )
A.B.C.D.
C

試題分析:由加密規(guī)則知,∴,即當(dāng)接收方收到密文14,9,23,28時,解密得到的明文為,故選C
點評:熟練運用映射法則求解是解決此類問題的關(guān)鍵,屬基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)都是定義在上的奇函數(shù),設(shè),若,則       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

定義在[-1,1]上的奇函數(shù)滿足,且當(dāng),時,有
(1)試問函數(shù)f(x)的圖象上是否存在兩個不同的點A,B,使直線AB恰好與y軸垂直,若存在,求出A,B兩點的坐標(biāo);若不存在,請說明理由并加以證明.
(2)若對所有恒成立,
求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)在區(qū)間上的導(dǎo)函數(shù)為,在區(qū)間上的導(dǎo)函數(shù)為,若在區(qū)間恒成立,則稱函數(shù)在區(qū)間上的“凸函數(shù)”。已知,若對任意的實數(shù)滿足時,函數(shù)在區(qū)間上為“凸函數(shù)”,則的最大值為
A.4           B.3            C. 2           D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù),則      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

小明和同桌小聰一起合作探索:如圖,一架5米長的梯子AB斜靠在鉛直的墻壁AC上,這時梯子的底端B到墻角C的距離為1.4米.如果梯子的頂端A沿墻壁下滑0.8米,那么底端B將向左移動多少米?

(1)小明的思路如下,請你將小明的解答補充完整:
解:設(shè)點B將向左移動x米,即BE=x,則:
EC= x+1.4,DC=ACDC=-0.8=4,
DE=5,在Rt△DEC中,由EC2+DC2=DE2
得方程為:     , 解方程得:    ,
∴點B將向左移動    米.
(2)解題回顧時,小聰提出了如下兩個問題:
①將原題中的“下滑0.8米”改為“下滑1.8米”,那么答案會是1.8米嗎?為什么?
②梯子頂端下滑的距離與梯子底端向左移動的距離能相等嗎?為什么?
請你解答小聰提出的這兩個問題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

建造一間占 地面積為12m²的背面靠墻的豬圈,底面為長方形,豬圈正面的造價為每平方米12元,側(cè)面的造價為每平方米80元,屋頂造價為1120元.如果墻高3m,且不計豬圈背面的費用,問:如何設(shè)計能使豬圈的總 造價最低?最低總造價是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

國家助學(xué)貸款是由財政貼息的信用貸款,旨在幫助高校家庭經(jīng)濟困難學(xué)生支付在校期間所需的學(xué)費、住宿費及生活費。每一年度申請總額不超過6000元。某大學(xué)2012屆畢業(yè)生凌霄在本科期間共申請了24000元助學(xué)貸款,并承諾畢業(yè)后3年(按36個月計)內(nèi)還清。簽約單位提供的工資標(biāo)準(zhǔn)為第一年內(nèi)每月1500元,第13個月開始每月工資比前一個月增加5%直到4000元。凌霄同學(xué)計劃前12個月每月還款500元,第13個月開始每月還款比前一個月多元.
(1)若凌霄同學(xué)恰好在第36個月(即畢業(yè)后3年)還清貸款,求值;(6分)
(2)當(dāng)時,凌霄同學(xué)將在畢業(yè)后第幾個月還清最后一筆貸款?他當(dāng)月工資余額能否滿足當(dāng)月3000元的基本生活費?(6分)
(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù) (a>0,且a≠1),=.
(1)函數(shù)的圖象恒過定點A,求A點坐標(biāo);
(2)若函數(shù)的圖像過點(2,),證明:函數(shù)(1,2)上有唯一的零點.

查看答案和解析>>

同步練習(xí)冊答案