分析 (1)從問題的反面進(jìn)行解答,只要除去沒有女生的部分;
(2)由題意求出二項(xiàng)展開式的第三項(xiàng),得到關(guān)于n 的方程,然后利用通項(xiàng)公式求二項(xiàng)式系數(shù)最大項(xiàng).
解答 解:(1)從5位男生與3位女生中選派4名代表參加某項(xiàng)活動(dòng),共有${C}_{9}^{4}$種不同的選法,
而沒有女生的選法有${C}_{5}^{4}$,所以其中至少有1位女生的選派方案有${C}_{9}^{4}-{C}_{5}^{4}$=121;
(2)因?yàn)椋?\sqrt{x}$-$\frac{2}{x}$)n的展開式中x的一次項(xiàng)是第3項(xiàng),
所以${C}_{n}^{2}(\sqrt{x})^{n-2}(-\frac{2}{x})^{2}$=$(-2)^{2}{C}_{n}^{2}{x}^{\frac{n-4}{2}}$,所以n=6,
所以展開式中二次項(xiàng)系數(shù)最大的項(xiàng)為第四項(xiàng),即${T}_{4}={C}_{6}^{3}(\sqrt{x})^{3}(-\frac{2}{x})^{3}=-160{x}^{-\frac{3}{2}}$.
點(diǎn)評(píng) 本題考查了組合的應(yīng)用以及二項(xiàng)展開式定理的運(yùn)用;屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,$\frac{1}{4}$) | B. | (-1,$\frac{1}{2}$)∪(1,+∞) | C. | (-∞,-1)∪(4,+∞) | D. | (-1,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,3) | B. | (1,3) | C. | (-1,$\frac{1}{2}$) | D. | ($\frac{1}{2}$,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
患病 | 未患病 | 總計(jì) | |
未服用藥 | 25 | 15 | 40 |
服用藥 | c | d | 40 |
總計(jì) | M | N | 80 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (2,3) | C. | (3,4) | D. | (1,2)與(2,3) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com