【題目】如圖:已知拋物線 C1:y2=2px (p>0),直線 l 與拋物線 C 相交于 A、B 兩點(diǎn),且當(dāng)傾斜角為 60°的直線 l 經(jīng)過拋物線 C1 的焦點(diǎn) F 時(shí),有|AB|=

(Ⅰ)求拋物線 C 的方程;
(Ⅱ)已知圓 C2:(x﹣1)2+y2= ,是否存在傾斜角不為 90°的直線 l,使得線段 AB 被圓 C2截成三等分?若存在,求出直線 l 的方程;若不存在,請(qǐng)說明理由.

【答案】解:(Ⅰ)當(dāng)直線l的傾斜角為60°時(shí),直線l的方程為y= (x﹣ ),

聯(lián)立方程組 ,消元得3x2﹣5px+ =0,

∴|AB|= +p= ,解得p= ,

∴拋物線C的方程為y2=

(Ⅱ)假設(shè)存在直線l,使得AB被圓C2三等分,設(shè)直線l與圓C2的交點(diǎn)為C,D,

設(shè)直線l的方程為x=my+b,A(x1,y1),B(x2,y2),

聯(lián)立方程組 ,得4y2﹣my﹣b=0,

∴y1+y2= ,y1y2=﹣ ,∴x1+x2=m(y1+y2)+2b= +2b,

∴AB的中點(diǎn)坐標(biāo)為M( +b, ),

又圓C2的圓心為C2(1,0),∴k = ,

即m2+8b﹣7=0,∴b=

又|AB|= =

∵圓心C2(1,0)到直線l的距離d= ,圓C2的半徑為 ,

∴|CD|=2 = ,

又|AB|= = .C,D為AB的三等分點(diǎn),

∴|AB|=3|CD|,

= ,解得m=± ,∴b=

∴直線l的方程為y=± x+


【解析】(I)聯(lián)立方程組,利用根與系數(shù)的關(guān)系和拋物線的性質(zhì)列方程解出p;(II)設(shè)直線l方程為x=my+b,與拋物線方程聯(lián)立,求出AB的中點(diǎn)坐標(biāo),利用垂徑定理列方程得出m,b的關(guān)系,利用弦長(zhǎng)公式計(jì)算|AB|,|CD|,根據(jù)|AB|=3|CD|列方程求出m得出直線l的方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),橢圓E: (a≥b>0)的右頂點(diǎn)為A,上頂點(diǎn)為B,過點(diǎn)O且斜率為 的直線與直線AB相交M,且
(Ⅰ)求橢圓E的離心率e;
(Ⅱ)PQ是圓C:(x﹣2)2+(y﹣1)2=5的一條直徑,若橢圓E經(jīng)過P,Q兩點(diǎn),求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°.

(1)證明:平面ADB⊥平面BDC;

(2)若BD=1,求三棱錐D-ABC的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的兩條對(duì)角線相交于點(diǎn)M(2,0),AB邊所在直線的方程為x-3y-6=0,點(diǎn)T(-1,1)在AD邊所在的直線上.

(1)求AD邊所在直線的方程;

(2)求矩形ABCD外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正四面體P﹣ABC中,點(diǎn)M是棱PC的中點(diǎn),點(diǎn)N是線段AB上一動(dòng)點(diǎn),且 ,設(shè)異面直線 NM 與 AC 所成角為α,當(dāng) 時(shí),則cosα的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知菱形 ABCD 中,對(duì)角線 AC 與 BD 相交于一點(diǎn) O,∠A=60°,將△BDC 沿著 BD 折起得△BDC',連結(jié) AC'.
(Ⅰ)求證:平面 AOC'⊥平面 ABD;
(Ⅱ)若點(diǎn) C'在平面 ABD 上的投影恰好是△ABD 的重心,求直線 CD 與底面 ADC'所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)的高鐵技術(shù)發(fā)展迅速,鐵道部門計(jì)劃在兩城市之間開通高速列車,假設(shè)列車在試運(yùn)行期間,每天在兩個(gè)時(shí)間段內(nèi)各發(fā)一趟由城開往城的列車(兩車發(fā)車情況互不影響),城發(fā)車時(shí)間及概率如下表所示:

發(fā)車

時(shí)間

概率

若甲、乙兩位旅客打算從城到城,他們到達(dá)火車站的時(shí)間分別是周六的和周日的(只考慮候車時(shí)間,不考慮其他因素).

(1)設(shè)乙候車所需時(shí)間為隨機(jī)變量(單位:分鐘),求的分布列和數(shù)學(xué)期望;

(2)求甲、乙兩人候車時(shí)間相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知n∈N* , Sn=(n+1)(n+2)…(n+n),
(Ⅰ)求 S1 , S2 , S3 , T1 , T2 , T3;
(Ⅱ)猜想Sn與Tn的關(guān)系,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中.

圖(1圖(2

(Ⅰ)如圖(1)求與平面所成的角

(Ⅱ)如圖(2)求證: ∥平面

查看答案和解析>>

同步練習(xí)冊(cè)答案