【題目】已知函數(shù)f(x)=sinxcos2x,則下列關(guān)于函數(shù)f(x)的結(jié)論中,錯(cuò)誤的是( )
A.最大值為1
B.圖象關(guān)于直線x=﹣ 對稱
C.既是奇函數(shù)又是周期函數(shù)
D.圖象關(guān)于點(diǎn)( ,0)中心對稱
【答案】D
【解析】解:∵函數(shù)f(x)=sinxcos2x,當(dāng)x= 時(shí),f(x)取得最大值為1,故A正確;
當(dāng)x=﹣ 時(shí),函數(shù)f(x)=1,為函數(shù)的最大值,故圖象關(guān)于直線x=﹣ 對稱;故B正確;
函數(shù)f(x)滿足f(﹣x)=sin(﹣x)cos(﹣2x)=﹣sinxcos2x=﹣f(x),故函數(shù)f(x)為奇函數(shù),
再根據(jù)f(x+2π)=sin(x+2π)cos[﹣2(x+2π)]=sinxcos2x,故f(x)的周期為2π,故C正確;
由于f( ﹣x)+f(x)=﹣cosxcos(3π﹣2x)+sinxcos2x=cosxcos2x+sinxcos2x=cos2x(sinx+cosx)=0不一定成立,
故f(x)圖象不一定關(guān)于點(diǎn)( ,0)中心對稱,故D不正確,
故選:D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解正弦函數(shù)的對稱性(正弦函數(shù)的對稱性:對稱中心;對稱軸).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面上,點(diǎn)A、C為射線PM上的兩點(diǎn),點(diǎn)B、D為射線PN上的兩點(diǎn),則有 (其中S△PAB、S△PCD分別為△PAB、△PCD的面積);空間中,點(diǎn)A、C為射線PM上的兩點(diǎn),點(diǎn)B、D為射線PN上的兩點(diǎn),點(diǎn)E、F為射線PL上的兩點(diǎn),則有 =(其中VP﹣ABE、VP﹣CDF分別為四面體P﹣ABE、P﹣CDF的體積).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+ )(x∈R,ω>0)的最小正周期為π,將y=f(x)的圖象向左平移|φ|個(gè)單位長度,所得函數(shù)y=f(x)為偶函數(shù)時(shí),則φ的一個(gè)值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C: ,(θ為參數(shù)),在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程2ρcosθ+ρsinθ﹣6=0.
(1)寫出曲線C的普通方程,直線l的直角坐標(biāo)方程;
(2)過曲線C上任意一點(diǎn)P作與l夾角為30°的直線,交l于點(diǎn)A,求|PA|的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在斜三棱柱ABC﹣A′B′C′中,AC=BC=A′A=A′C,A′在底面ABC上的射影為AB的中點(diǎn)D,E為線段BC的中點(diǎn).
(1)證明:平面A′DE⊥平面BCC′B′;
(2)求二面角D﹣B′C﹣B的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C所對的邊分別是a、b、c,已知3asinC=ccosA.
(Ⅰ)求sinA的值;
(Ⅱ)若B= ,△ABC的面積為9,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中有6個(gè)編號不同的黑球和3個(gè)編號不同的白球,這9個(gè)球的大小及質(zhì)地都相同,現(xiàn)從該袋中隨機(jī)摸取3個(gè)球,則這三個(gè)球中恰有兩個(gè)黑球和一個(gè)白球的方法總數(shù)是 , 設(shè)摸取的這三個(gè)球中所含的黑球數(shù)為X,則P(X=k)取最大值時(shí),k的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|,不等式f(x)≤3的解集為[﹣1,5].
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若f(x)+f(x+5)≥m對一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F(xiàn)分別為BC,CD的中點(diǎn),以A為圓心,AD為半徑的半圓分別交BA及其延長線于點(diǎn)M,N,點(diǎn)P在 上運(yùn)動(dòng)(如圖).若 ,其中λ,μ∈R,則2λ﹣5μ的取值范圍是( )
A.[﹣2,2]
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com