設
分別是橢圓
的左、右焦點,點P在橢圓上,若△
為直角三角形,則△
的面積等于__
__.
試題分析:由題意可知
若P點為短軸端點時,
此時角為最大值,故
故不妨令
帶入橢圓方程可知
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
方程為
,過右焦點斜率為1的直線到原點的距離為
.
(1)求橢圓方程.
(2)已知
為橢圓的左右兩個頂點,
為橢圓在第一象限內的一點,
為過點
且垂直
軸的直線,點
為直線
與直線
的交點,點
為以
為直徑的圓與直線
的一個交點,求證:
三點共線.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的中心在坐標原點,右準線為
,離心率為
.若直線
與橢圓
交于不同的兩點
、
,以線段
為直徑作圓
.
(1)求橢圓
的標準方程;
(2)若圓
與
軸相切,求圓
被直線
截得的線段長.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知橢圓
的上、下頂點分別為
,點
在橢圓上,且異于點
,直線
與直線
分別交于點
,
(Ⅰ)設直線
的斜率分別為
,求證:
為定值;
(Ⅱ)求線段
的長的最小值;
(Ⅲ)當點
運動時,以
為直徑的圓是否經(jīng)過某定點?請證明你的結論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
,
為其右焦點,離心率為
.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點
,問是否存在直線
,使
與橢圓
交于
兩點,且
.若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
給定橢圓
:
,稱圓心在原點
,半徑為
的圓是橢圓
的“準圓”.若橢圓
的一個焦點為
,且其短軸上的一個端點到
的距離為
.
(Ⅰ)求橢圓
的方程和其“準圓”方程;
(Ⅱ)點
是橢圓
的“準圓”上的一個動點,過動點
作直線
,使得
與橢圓
都只有一個交點,試判斷
是否垂直,并說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的中心在原點,焦點在
軸上,離心率
,它的一個頂點恰好是拋物線
的焦點.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設橢圓
與曲線
的交點為
、
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設F
1(-c, 0), F
2(c, 0)是橢圓
(a>b>0)的兩個焦點,P是以|F
1F
2|為直徑的圓與橢圓的一個交點,且∠PF
1F
2=5∠PF
2F
1,則該橢圓的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知點P(4, 4),圓C:
與橢圓E:
有一個公共點A(3,1),F(xiàn)
1、F
2分別是橢圓的左、右焦點,直線PF
1與圓C相切.
(Ⅰ)求m的值與橢圓E的方程;(Ⅱ)設Q為橢圓E上的一個動點,求
的取值范圍.
查看答案和解析>>