如圖,已知橢圓的上、下頂點(diǎn)分別為,點(diǎn)在橢圓上,且異于點(diǎn),直線與直線分別交于點(diǎn)

(Ⅰ)設(shè)直線的斜率分別為,求證:為定值;
(Ⅱ)求線段的長(zhǎng)的最小值;
(Ⅲ)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),以為直徑的圓是否經(jīng)過某定點(diǎn)?請(qǐng)證明你的結(jié)論.
(Ⅰ);(Ⅱ);(Ⅲ).

試題分析:(Ⅰ)隨點(diǎn)運(yùn)動(dòng)而變化,故設(shè)點(diǎn)表示,進(jìn)而化簡(jiǎn)整體消去變量;(Ⅱ)點(diǎn)的位置由直線,生成,所以可用兩直線方程解出交點(diǎn)坐標(biāo),求出,它必是的函數(shù),利用基本不等式求出最小值; (Ⅲ)利用的坐標(biāo)求出圓的方程,方程必含有參數(shù),消去一個(gè)后,利用等式恒成立方法求出圓所過定點(diǎn)坐標(biāo).
試題解析:(Ⅰ),令,則由題設(shè)可知,
∴直線的斜率,的斜率,又點(diǎn)在橢圓上,
所以,(),從而有.
(Ⅱ)由題設(shè)可以得到直線的方程為,
直線的方程為
,  由,
直線與直線的交點(diǎn),直線與直線的交點(diǎn).
,
等號(hào)當(dāng)且僅當(dāng)時(shí)取到,故線段長(zhǎng)的最小值是.
(Ⅲ)設(shè)點(diǎn)是以為直徑的圓上的任意一點(diǎn),則,故有
,又,所以以為直徑的圓的方程為
,令解得,
為直徑的圓是否經(jīng)過定點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓)的右焦點(diǎn),右頂點(diǎn),右準(zhǔn)線

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)動(dòng)直線與橢圓有且只有一個(gè)交點(diǎn),且與右準(zhǔn)線相交于點(diǎn),試探究在平面直角坐標(biāo)系內(nèi)是否存在點(diǎn),使得以為直徑的圓恒過定點(diǎn)?若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為B,離心率為,圓軸交于兩點(diǎn)
(Ⅰ)求的值;
(Ⅱ)若,過點(diǎn)與圓相切的直線的另一交點(diǎn)為,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的長(zhǎng)軸兩端點(diǎn)分別為,是橢圓上的動(dòng)點(diǎn),以為一邊在軸下方作矩形,使于點(diǎn),于點(diǎn)

(Ⅰ)如圖(1),若,且為橢圓上頂點(diǎn)時(shí),的面積為12,點(diǎn)到直線的距離為,求橢圓的方程;
(Ⅱ)如圖(2),若,試證明:成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,且經(jīng)過點(diǎn)
(Ⅰ)求橢圓的方程;
(Ⅱ)如果過點(diǎn)的直線與橢圓交于兩點(diǎn)(點(diǎn)與點(diǎn)不重合),
①求的值;
②當(dāng)為等腰直角三角形時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的左焦點(diǎn)為,左、右頂點(diǎn)分別為,上頂點(diǎn)為,過三點(diǎn)作圓  
(Ⅰ)若線段是圓的直徑,求橢圓的離心率;
(Ⅱ)若圓的圓心在直線上,求橢圓的方程;
(Ⅲ)若直線交(Ⅱ)中橢圓于,交軸于,求的最大值  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知、分別為橢圓的兩個(gè)焦點(diǎn),點(diǎn)為其短軸的一個(gè)端點(diǎn),若為等邊三角形,則該橢圓的離心率為(    )
A.  B. C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)分別是橢圓的左、右焦點(diǎn),點(diǎn)P在橢圓上,若△為直角三角形,則△的面積等于__   __.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)是直線被橢圓所截得的線段中點(diǎn),求直線的方程。

查看答案和解析>>

同步練習(xí)冊(cè)答案