已知,數(shù)列是首項為,公比也為的等比數(shù)列,令
(Ⅰ)求數(shù)列的前項和;
(Ⅱ)當數(shù)列中的每一項總小于它后面的項時,求的取值范圍.
(1);(2).
解析試題分析:本題考查數(shù)列的通項公式和數(shù)列求和問題,考查學生的計算能力和分析問題解決問題的能力,考查分類討論思想和轉(zhuǎn)化思想.第一問,利用等比數(shù)列的通項公式先寫出數(shù)列的通項公式,利用對數(shù)的性質(zhì)得到的通項公式,從而列出,它符合錯位相減法,利用錯位相減法求和;第二問,有題意得,討論的正負,轉(zhuǎn)化為恒成立問題,求出.
試題解析:(Ⅰ)由題意知,.
∴.
.
以上兩式相減得
.
∵,∴.
(Ⅱ)由.
由題意知,而,
∴. ①
(1)若,則,,故時,不等式①成立;
(2)若,則,
不等式①成立
恒成立
.
綜合(1)、(2)得的取值范圍為.
考點:1.等比數(shù)列的通項公式;2.等比數(shù)列的前n項和公式;3.錯位相減法;4.恒成立問題.
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列{an}的前n項和Sn=n2(n∈N*),等比數(shù)列{bn}滿足b1=a1,2b3=b4.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若cn=an·bn(n∈N*),求數(shù)列{cn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
數(shù)列{}的前n項和為,.
(Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項和;
(Ⅲ)若,.求不超過的最大整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),設(shè)曲線在點處的切線與軸的交點為,其中為正實數(shù).
(1)用表示;
(2),若,試證明數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;
(3)若數(shù)列的前項和,記數(shù)列的前項和,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com