已知二次函數(shù)
(Ⅰ)求不等式的解集;
(Ⅱ)若,記為數(shù)列的前項和,且,),點(diǎn)在函數(shù)的圖像上,求的表達(dá)式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,數(shù)列是首項為,公比也為的等比數(shù)列,令
(Ⅰ)求數(shù)列的前項和;
(Ⅱ)當(dāng)數(shù)列中的每一項總小于它后面的項時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等比數(shù)列{}的前n項和為,已知對任意的,點(diǎn),均在函數(shù)且均為常數(shù))的圖像上.
(1)求r的值;
(2)當(dāng)b=2時,記 求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,已知,.
(1)求、并判斷能否為等差或等比數(shù)列;
(2)令,求證:為等比數(shù)列;
(3)求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項和為,點(diǎn)在直線上,.(1)證明數(shù)列為等比數(shù)列,并求出其通項;(2)設(shè),記,求數(shù)列的前和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列{}的前n項和為,,.
(1)設(shè),證明:數(shù)列是等比數(shù)列;
(2)求數(shù)列的前項和;
(3)若,.求不超過的最大整數(shù)的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,數(shù)列滿足,數(shù)列滿足;數(shù)列為公比大于的等比數(shù)列,且為方程的兩個不相等的實根.
(Ⅰ)求數(shù)列和數(shù)列的通項公式;
(Ⅱ)將數(shù)列中的第項,第項,第項,……,第項,……刪去后剩余的項按從小到大的順序排成新數(shù)列,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前n項和為,,且,數(shù)列滿足,數(shù)列的前n項和為(其中).
(Ⅰ)求和;
(Ⅱ)若對任意的,不等式恒成立,求實數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的各項均為正數(shù),前n項的和Sn=
⑴ 求{an}的通項公式;
⑵ 設(shè)等比數(shù)列{bn}的首項為b,公比為2,前n項的和為Tn.若對任意n∈N*,Sn≤Tn
均成立,求實數(shù)b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com