18.已知函數(shù)f(x)的定義域?yàn)閇-2,2],且f(x)在[-2,2]上是增函數(shù),f(1-m)<f(m),則實(shí)數(shù)m的取值范圍為( 。
A.$(\frac{1}{2},+∞)$B.$(-∞,\frac{1}{2})$C.$({\frac{1}{2},2}]$D.$[{-2,\frac{1}{2}})$

分析 根據(jù)題意,由函數(shù)的定義域以及單調(diào)性分析可得$\left\{\begin{array}{l}{-2≤1-m≤2}\\{-2≤m≤2}\\{1-m<m}\end{array}\right.$,解可得m的取值范圍,即可得答案.

解答 解:根據(jù)題意,函數(shù)f(x)的定義域?yàn)閇-2,2],且f(x)在[-2,2]上是增函數(shù),f(1-m)<f(m),
則有$\left\{\begin{array}{l}{-2≤1-m≤2}\\{-2≤m≤2}\\{1-m<m}\end{array}\right.$,
解可得:$\frac{1}{2}$<m≤2,
即m的取值范圍是($\frac{1}{2}$,2];
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性的應(yīng)用,注意函數(shù)的定義域.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=|3x-4|.
(Ⅰ)記函數(shù)g(x)=f(x)+|x+2|-4,在下列坐標(biāo)系中作出函數(shù)g(x)的圖象,并根據(jù)圖象求出函數(shù)g(x)的最小值;
(Ⅱ)記不等式f(x)<5的解集為M,若p,q∈M,且|p+q+pq|<λ,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知α是第三象限角,且f(α)=$\frac{sin(α-\frac{π}{2})cos(\frac{3π}{2}+α)tan(π-α)}{tan(-α-π)sin(-π-α)}$.
(1)化簡(jiǎn)f(α);
(2)若cos(α-$\frac{3}{2}$π)=$\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$ (t為參數(shù),0<α<$\frac{π}{2}$),若以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos2θ+2cosθ=ρ(ρ≥0,0≤θ<2π),直線l與曲線C交于A,B兩點(diǎn).
(1)求證:$\overrightarrow{OA}$•$\overrightarrow{OB}$是定值;
(2)若定點(diǎn)P(1,0),且|PA|=2|PB|,求直線1的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知曲線C的方程是:x2+y2-2x-4y+m=0,點(diǎn)P(3,-1).
(1)若m=1,直線l過點(diǎn)P且與曲線C只有一個(gè)公共點(diǎn),求直線l的方程;
(2)若曲線C表示圓且被直線x+2y+5=0截得的弦長(zhǎng)為2$\sqrt{5}$,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)$f(x)=(2-m)lnx+\frac{1}{x}+2mx$.
(1)當(dāng)f'(1)=0時(shí),求實(shí)數(shù)的m值及曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則an=$\left\{\begin{array}{l}{1,n=1}\\{2,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上,其右焦點(diǎn)到直線$x-y+2\sqrt{2}=0$的距離為3.
(1)求橢圓C的方程;
(2)設(shè)直線l:y=x+m,是否存在實(shí)數(shù)m,使直線l與橢圓C有兩個(gè)不同的交點(diǎn)M,N,且|AM|=|AN|,若存在,求出m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在直角坐標(biāo)系xOy中,圓C1和C2的參數(shù)方程分別是$\left\{\begin{array}{l}x=2+2cosφ\\ y=2sinφ\end{array}\right.$(φ為參數(shù))和$\left\{\begin{array}{l}x=cosβ\\ y=1+sinβ\end{array}\right.$(β為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系;
(1)求圓C1和C2的極坐標(biāo)方程;
(2)射線$OM:θ=α(0<α<\frac{π}{2})$與圓C1的交點(diǎn)為O、P,與圓C2的交點(diǎn)為O、Q,求|OP|•|OQ|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案