14.甲,乙兩人獨(dú)立地破譯1個密碼,他們能破譯密碼的概率分別是$\frac{1}{5}$和$\frac{1}{4}$,則這個密碼能被破譯的概率為$\frac{2}{5}$.

分析 密碼被譯出的對立事件是密碼不能被譯出,而密碼不能被譯出的情況是:兩個人同時不能破譯這個密碼,由此利用對立事件概率計(jì)算公式能求出密碼被譯出的概率.

解答 解:兩人獨(dú)立地破譯一個密碼,他們能譯出的概率分別為$\frac{1}{5}$,$\frac{1}{4}$,
密碼被譯出的對立事件是密碼不能被譯出,
而密碼不能被譯出的情況是:兩個人同時不能破譯這個密碼,
∴密碼被譯出的概率:p=1-(1-$\frac{1}{5}$)(1-$\frac{1}{4}$)=$\frac{2}{5}$,
故答案為:$\frac{2}{5}$.

點(diǎn)評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意對立事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知cosα=$\frac{5}{13}$,cos(α-β)=$\frac{4}{5}$,且0<β<α<$\frac{π}{2}$,
(1)求tan2α的值;  
(2)求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若數(shù)列a,1,b,7是等差數(shù)列,則$\frac{a}$=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=$\frac{n+1}{2n}$an
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=n(4-Sn),n∈N*,若集合M={n|bn≥λ,n∈N*}恰有5個元素,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.復(fù)數(shù)$\frac{1}{{{{(1+i)}^2}}}$的虛部是$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在三角形ABC中,a,b,c分別為角A、B、C的對邊,
(Ⅰ)若sin(B+C)-$\sqrt{3}$cosA=0,求角A的大小;
(Ⅱ)若A=$\frac{π}{3}$,a=$\sqrt{3}$,b=2,求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.四名男生和三名女生排成一排照相,學(xué)生甲必須排在最左邊或最右邊,有1440種不同的排法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在一次讀書活動中,一個學(xué)生要從2本科技書、3本政治書、8本文藝書中任選一本,共有選法13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求下列向量的數(shù)量積:
(1)$\overrightarrow{a}$=(2,-3),$\overrightarrow$=(1,3);
(2)$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(1,2);
(3)$\overrightarrow{a}$=(4,2),$\overrightarrow$=(-2,-3).

查看答案和解析>>

同步練習(xí)冊答案