【題目】已知曲線 的參數(shù)方程 ( 為參數(shù)),曲線 的極坐標方程為 .
(1)將曲線 的參數(shù)方程化為普通方程,將曲線 的極坐標方程化為直角坐標方程;
(2)試問曲線 , 是否相交?若相交,請求出公共弦的長;若不相交,請說明理由.

【答案】
(1)解:由 為參數(shù))得

曲線 的普通方程為 .

,∴ .

∴有 為所求曲線 的直角坐標方程


(2)解:∵圓 的圓心坐標 ,圓 的圓心坐標為

,所以兩圓相交.

設相交弦長為 ,因為兩圓半徑相等,所以公共弦平分線段 ,

,

.

即所求公共弦的長為


【解析】(1)根據(jù)同角三角函數(shù)的關系式消去參數(shù)θ ,即可求出曲線C1的普通方程再把曲線C2的極坐標方程兩邊同乘以,借助極坐標公式進行化簡即可求出直角坐標的方程。(2)先求出兩個圓心之間的距離與兩半徑和進行比較,設出相交弦長為d,因為兩圓半徑相等所以公共弦分線段C1C2,建立等量關系求出即可。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了調查某廠工人生產某種產品的能力,隨機抽查了20位工人某天生產該產品的數(shù)量.產品數(shù)量的分組區(qū)間為[45,55),[55,65),[65,75),[75,85),[85,95)由此得到頻率分布直方圖如圖.則產品數(shù)量位于[55,65)范圍內的頻率為;這20名工人中一天生產該產品數(shù)量在[55,75)的人數(shù)是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018海南高三階段性測試(二模)如圖,在直三棱柱中, , ,點的中點,點上一動點.

I)是否存在一點,使得線段平面?若存在,指出點的位置,若不存在,請說明理由.

II)若點的中點且,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某加油站20名員工日銷售量的頻率分布直方圖,如圖所示:

1)補全該頻率分布直方圖在[2030)的部分,并分別計算日銷售量在 [1020),[2030)的員工數(shù);

2)在日銷量為[10,30)的員工中隨機抽取2人,求這兩名員工日銷量在 [20,30)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個盒子中裝有5張編號依次為1、2、3、4、5的卡片,這5 張卡片除號碼外完全相同.現(xiàn)進行有放回的連續(xù)抽取2 次,每次任意地取出一張卡片.

(1)求出所有可能結果數(shù),并列出所有可能結果;

(2)求事件“取出卡片號碼之和不小于7 或小于5”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,圓C的方程為x2y28x150,若直線ykx2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的最大值是____________

【答案】

【解析】C的方程可化為(x4)2y21,C的圓心為(40),半徑為1.由題意知,直線ykx2上至少存在一點A(x0kx02),以該點為圓心,1為半徑的圓與圓C有公共點,存在x0∈R,使得AC≤11成立,即ACmin≤2.

ACmin即為點C到直線ykx2的距離,

≤2,解得0≤k≤.k的最大值是.

型】填空
束】
15

【題目】在平面直角坐標系中,直線

(1)若直線與直線平行,求實數(shù)的值;

(2)若, ,點在直線上,已知的中點在軸上,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校舉辦校園科技文化藝術節(jié),在同一時間安排《生活趣味數(shù)學》和《校園舞蹈賞析》兩場講座.已知A、B兩學習小組各有5位同學,每位同學在兩場講座任意選聽一場.若A組1人選聽《生活趣味數(shù)學》,其余4人選聽《校園舞蹈賞析》;B組2人選聽《生活趣味數(shù)學》,其余3人選聽《校園舞蹈賞析》.
(1)若從此10人中任意選出3人,求選出的3人中恰有2人選聽《校園舞蹈賞析》的概率;
(2)若從A、B兩組中各任選2人,設X為選出的4人中選聽《生活趣味數(shù)學》的人數(shù),求X的分布列和數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(I)求函數(shù) 在點 處的切線方程;
(II)求函數(shù) 的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的多面體中, 菱形, 是矩形, ⊥平面 , , .

(Ⅰ)異面直線 所成的角余弦值;
(Ⅱ)求證平面 ⊥平面 ;
(Ⅲ)在線段 取一點 ,當二面角 的大小為60°時,求 .

查看答案和解析>>

同步練習冊答案