【題目】已知函數(shù) , .
(1)求 的定義域;
(2)判斷并證明 的奇偶性.
【答案】
(1)解:由題意得,
解得:﹣1<x<1,
∴原函數(shù)的定義域為(﹣1,1)
(2)解:f(x)在(﹣1,1)上為奇函數(shù),證明如下,
∵f(﹣x)=loga
=loga( )﹣1
=﹣loga
=f(x);
∴f(x)在(﹣1,1)上為奇函數(shù)
【解析】(1)根據(jù)題意由真數(shù)大于零解出關于x的不等式即可。(2) 由奇函數(shù)的定義f(-x)=-f(x) ,代入驗證即可得出結論。
【考點精析】本題主要考查了函數(shù)的定義域及其求法和函數(shù)的奇函數(shù)的相關知識點,需要掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零;一般地,對于函數(shù)f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù)才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)= (x≠-2),h(x)=x2+1.
(1)求f(2),h(1)的值;
(2)求f[h(2)]的值;
(3)求f(x),h(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣ (k+1)x2+3kx+1,其中k∈R.
(1)當k=3時,求函數(shù)f(x)在[0,5]上的值域;
(2)若函數(shù)f(x)在[1,2]上的最小值為3,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設b和c分別是先后拋擲一枚骰子得到的點數(shù),用隨機變量ξ表示方程x2+bx+c=0實根的個數(shù)(重根按一個計).
(1)求方程x2+bx+c=0有實根的概率;
(2)(理)求ξ的分布列和數(shù)學期望 (文)求P(ξ=1)的值
(3)(理)求在先后兩次出現(xiàn)的點數(shù)中有5的條件下,方程x2+bx+c=0有實根的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1中,AB=AC=AA1 , AB⊥AC,M是CC1的中點,N是BC的中點,點P在線段A1B1上運動.
(Ⅰ)求證:PN⊥AM;
(Ⅱ)試確定點P的位置,使直線PN和平面ABC所成的角最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在五面體 中,四邊形 是邊長為 的正方形, 平面 , , , , .
(1)求證: 平面 ;
(2)求直線 與平面 所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R的函數(shù) 是偶函數(shù),且滿足 上的解析式為 ,過點 作斜率為k的直線l , 若直線l與函數(shù) 的圖象至少有4個公共點,則實數(shù)k的取值范圍是
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) 是偶函數(shù).
(1)求 的值;
(2)若函數(shù) 沒有零點,求 得取值范圍;
(3)若函數(shù) , 的最小值為0,求實數(shù) 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,BC⊥DC,AE⊥DC,M,N分別是AD,BE的中點,將三角形ADE沿AE折起,則下列說法正確的是________(填序號).
①不論D折至何位置(不在平面ABC內),都有MN∥平面DEC;②不論D折至何位置,都有MN⊥AE;③不論D折至何位置(不在平面ABC內),都有MN∥AB;④在折起過程中,一定存在某個位置,使EC⊥AD.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com