1.已知圓${C_1}:{(x+1)^2}+{(y+4)^2}=25$,圓${C}_{2}:{(x-2)}^{2}+{(y-2)}^{2}=10$,該兩圓的交點(diǎn)為A,B兩點(diǎn),求:
(1)直線AB的方程
(2)A,B兩點(diǎn)間的距離|AB|
(3)直線AB的垂直平分線的方程.

分析 (1)先求出A,B的坐標(biāo),再利用兩點(diǎn)式求方程;
(2)利用兩點(diǎn)間的距離公式,即可求出A,B兩點(diǎn)間的距離|AB|
(3)AB的中點(diǎn)坐標(biāo)為(1,0),直線AB的斜率為-$\frac{1}{2}$,即可求出直線AB的垂直平分線的方程.

解答 解:兩圓方程聯(lián)立,解方程組,可得A(3,-1),B(-1,1)
(1)直線AB的方程:y+1=$\frac{1+1}{-1-3}$(x-3),即x+2y-1=0;
(2)A,B兩點(diǎn)間的距離|AB|=$\sqrt{(3+1)^{2}+(-1-1)^{2}}$=2$\sqrt{10}$;
(3)AB的中點(diǎn)坐標(biāo)為(1,0),直線AB的斜率為-$\frac{1}{2}$,
∴直線AB的垂直平分線的方程2x-y-2=0.

點(diǎn)評 本題考查圓與圓的位置關(guān)系,考查直線方程,距離的計(jì)算,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)=cosxcos(x-$\frac{π}{3}$),x∈(0,$\frac{π}{3}$)的值域?yàn)閇$\frac{1}{2}$,$\frac{3}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)點(diǎn)P是△ABC內(nèi)一點(diǎn)(不包括邊界),且$\overrightarrow{AP}=m\overrightarrow{AB}+n\overrightarrow{AC},m,n∈R$,則(m-2)2+(n-2)2的取值范圍是($\frac{9}{2}$,8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在如圖所示的四邊形ABCD中,已知AB⊥AD,∠ABC=120°,∠ACD=60°,AD=2$\sqrt{3}$,設(shè)∠ACB=θ,點(diǎn)C到AD的距離為h.
(1)當(dāng)θ=15°,求h的值;
(2)求AB+BC的最大值.
(3)若△ABD的外接圓與△CBD的外接圓重合,求S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某校有高中生900名,其中高一年級300人,高二年級200人,高三年級400人,用分層抽樣的方法抽取一個(gè)容量為45的樣本,則高三年級應(yīng)抽。ā 。
A.25人B.15 人C.30 人D.20人

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖面積為4的矩形ABCD中有一個(gè)陰影部分,若往矩形ABCD投擲1000個(gè)點(diǎn),落在矩形ABCD的非陰影部分中的點(diǎn)數(shù)為400個(gè),試估計(jì)陰影部分的面積為2.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,平面α的斜線AB交α于B點(diǎn),且與α所成角為θ,平面α內(nèi)一動(dòng)點(diǎn)C滿足∠BAC=$\frac{π}{6}$,若動(dòng)點(diǎn)C的軌跡為橢圓,則θ的取值范圍是$\frac{π}{6}$<θ<$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若曲線y=x3+3ax在某處的切線方程為y=3x+1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\sqrt{3}$sinωx•cosωx-cos2ωx(ω>0)的最小正周期T=π.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,若(2a-c)cosB=bcosC,a+c=4,b=$\sqrt{7}$,求△ABC的面積S.

查看答案和解析>>

同步練習(xí)冊答案