11.已知函數(shù)f(x)=$\sqrt{3}$sinωx•cosωx-cos2ωx(ω>0)的最小正周期T=π.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,若(2a-c)cosB=bcosC,a+c=4,b=$\sqrt{7}$,求△ABC的面積S.

分析 (1)由三角函數(shù)公式化簡可得f(x)=sin(2ωx-$\frac{π}{6}$)-$\frac{1}{2}$,由周期公式可得ω=1,可得f(x)=sin(2x-$\frac{π}{6}$)-$\frac{1}{2}$,解不等式2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$可得;
(2)由題意和正弦定理代入已知式子易得B=$\frac{π}{3}$,再由余弦定理可得ac的值,整體代入S=$\frac{1}{2}$acsinB計算可得.

解答 解:(1)由三角函數(shù)公式化簡可得:f(x)=$\sqrt{3}$sinωx•cosωx-cos2ωx
=$\frac{\sqrt{3}}{2}$sin2ωx-$\frac{1}{2}$(1+cos2ωx)=sin(2ωx-$\frac{π}{6}$)-$\frac{1}{2}$,
由周期公式可得$\frac{2π}{2ω}$=π,解得ω=1,
故f(x)=sin(2x-$\frac{π}{6}$)-$\frac{1}{2}$,
由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$可得kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,
∴f(x)的單調(diào)遞增區(qū)間為[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z);
(2)∵(2a-c)cosB=bcosC,∴(2sinA-sinC)cosB=sinBcosC,
∴2sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA,
∴cosB=$\frac{1}{2}$,∴結(jié)合三角形內(nèi)角的范圍可得B=$\frac{π}{3}$,
由余弦定理可得b2=a2+c2-2accosB=a2+c2-ac=(a+c)2-3ac,
∵a+c=4,b=$\sqrt{7}$,∴7=16-3ac,解得ac=3,
∴△ABC的面積S=$\frac{1}{2}$acsinB=$\frac{1}{2}×3×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{4}$

點評 本題考查三角函數(shù)的圖象和性質(zhì),涉及正余弦定理解三角形,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知圓${C_1}:{(x+1)^2}+{(y+4)^2}=25$,圓${C}_{2}:{(x-2)}^{2}+{(y-2)}^{2}=10$,該兩圓的交點為A,B兩點,求:
(1)直線AB的方程
(2)A,B兩點間的距離|AB|
(3)直線AB的垂直平分線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.兩直線x-1=0與y+3=0的位置關(guān)系垂直(填“平行”、“垂直”、“重合”、“相交但不垂直)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.$cos\frac{2π}{5}cos\frac{4π}{5}$的值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點($\sqrt{3}$,$\frac{1}{2}$),離心率為$\frac{\sqrt{3}}{2}$,其左、右頂點分別為A,B.直線l1:x=-2,直線l2:y=2.
(1)求橢圓C的方程;
(2)設(shè)點P是橢圓C上在x軸上方的一個動點,直線AP與直線l2交于點M,直線BP與直線l1交于點N,求直線MN的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在等差數(shù)列{an}中,首項a1=-1,數(shù)列{bn}滿足bn=($\frac{1}{2}$)${\;}^{{a}_{n}}$,且b1b2b3=$\frac{1}{64}$.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)cn=(-1)n$\frac{6n-5}{{a}_{n}{a}_{n+1}}$,求數(shù)列{cn}的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.不等式$\left\{\begin{array}{l}{3x-2y-2>0}\\{x+4y+4>0}\\{2x+y-6<0}\end{array}\right.$的整數(shù)解的個數(shù)為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y-2≥0}\\{x≤4}\end{array}\right.$,當(dāng)且僅當(dāng)x=y=4時,z=ax-y取得最小值,則實數(shù)a的取值范圍是( 。
A.[-1,1]B.(-∞,1)C.(0,1)D.(-∞,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=x2-1(x∈R)的值域是(  )
A.[1,+∞)B.(-1,1]C.[-1,+∞)D.[0,1]

查看答案和解析>>

同步練習(xí)冊答案