2.命題“若a>b,則a2>b2”的逆命題是“若a2>b2,則a>b” .

分析 根據(jù)已知中的原命題,結(jié)合逆命題的定義,可得答案.

解答 解:命題“若a>b,則a2>b2”的逆命題是“若a2>b2,則a>b”,
故答案為:“若a2>b2,則a>b”

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是四種命題,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知△ABC是邊長(zhǎng)為l的等邊三角形,D、E分別是AB、AC邊上的點(diǎn),AD=AE,F(xiàn)是BC的中點(diǎn),AF與DE交于點(diǎn)G,將△ABF沿AF折起,得到三棱錐A-BCF,其中BC=$\frac{\sqrt{2}}{2}$.
(1)證明:DE∥平面BCF;
(2)證明:CF⊥平面ABF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.求下列曲線的微分.
(1)y=ln(1-x2);
(2)$\left\{\begin{array}{l}{x=a•cost}\\{y=b•sint}\end{array}\right.$;
(3)r=a•θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+2y-5≤0}\\{x≥1}\\{y≥0}\\{x+2y-3≥0}\end{array}\right.$,則$\frac{y}{x}$的值域?yàn)閇0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x},(x≥0)}\\{lo{g}_{3}(-x),(x<0)}\end{array}\right.$,函數(shù)g(x)=f2(x)+f(x)+t(t∈R),若函數(shù)g(x)有三個(gè)零點(diǎn),則實(shí)數(shù)t的取值范圍為(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,F(xiàn)1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),A是橢圓C的上頂點(diǎn),B是直線AF2與橢圓C的另一個(gè)交點(diǎn),∠F1AF2=60°
(1)求橢圓C的離心率;
(2)若a=2,求△AF1B的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.函數(shù)f(x)=4x-a•2x+1(-1≤x≤2)的最小值為g(a).
(Ⅰ) 當(dāng)a=2 時(shí),求g(a);
(Ⅱ) 求f(x)的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知關(guān)于x的不等式|x-2|-|x-3|≤m對(duì)x∈R恒成立.
(1)求實(shí)數(shù)m的最小值;
(2)若a,b,c為正實(shí)數(shù),k為實(shí)數(shù)m的最小值,且$\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$=k,求證:a+2b+3c≥9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若a1+a3+a5=6,則S5=( 。
A.5B.7C.10D.15

查看答案和解析>>

同步練習(xí)冊(cè)答案