各項(xiàng)為實(shí)數(shù)的等差數(shù)列的公差為4,其首項(xiàng)的平方與其余各項(xiàng)之和不超過(guò)100,這樣的數(shù)列至多有( 。╉(xiàng).
A、5B、6C、7D、8
考點(diǎn):等差數(shù)列的性質(zhì)
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:設(shè)a1,a2…,an是公差為4的等差數(shù)列,則a12+a2+a3+…+an≤100,由此能夠推導(dǎo)出7n2-6n-401≤0,由此能求出這樣的數(shù)列共有8項(xiàng).
解答: 解:設(shè)a1,a2…,an是公差為4的等差數(shù)列,
則a12+a2+a3+…+an≤100,
所以a12+(n-1)a1+(2n2-2n-100)≤0,
因此,7n2-6n-401≤0,
解得 n1≤n≤n2
其中n1=
1
7
(3-
2816
)<0,8<n2=
1
7
(3+
2816
)<9,
所以自然數(shù)n的最大值為8.故這樣的數(shù)列至多有8項(xiàng).
故選:D.
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì),考查數(shù)列的求和的應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,若輸入的x=log43,程序框圖(算法流程圖)的輸出結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(
3
sin
x
4
,1),
n
=(cos
x
4
,cos2
x
4
),記f(x)=
m
n
,若f(α)=
3
2
,求cos(
3
-α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)[x)表示大于x的最小整數(shù),如[3)=4,[-1.2)=-1,下列結(jié)論:
①[0)=0;②[x)-x的最小值是0;③[x)-x的最大值是0;④存在實(shí)數(shù)x,使[x)-x=0.5成立.其中正確的個(gè)數(shù)為(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)等比數(shù)列{an}滿足S8=17S4,若存在兩項(xiàng)am,an使得
aman
=4a1,則
1
m
+
5
n
的最小值為(  )
A、
7
4
B、1+
5
3
C、
25
6
D、
2
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫(xiě)出與角
π
4
終邊相同的角的集合S,并且把S中適合不等式-2π≤β<5π的元素β寫(xiě)出來(lái).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求f(x)=1-
x
2x+5
的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知函數(shù)f(x)=ax2+
1
x
(x≠0),常數(shù)a∈R.
(1)討論函數(shù)f(x)的奇偶性,并說(shuō)明理由;
(2)判斷a=1時(shí)函數(shù)f(x)在(-∞,0)上的單調(diào)性;
(3)當(dāng)a=0時(shí),f(m)<f(1+2m),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

.在△ABC中,a,b,c分別是角A,B,C所對(duì)的邊,設(shè)向量
m
=(a+b,c),
n
(b+c,a-b),且
m
n

(1)求角A的大;
(2)若B=
π
6
,a=3,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案