20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的焦距為10,一條漸近線的斜率為2,則雙曲線的標準方程是( 。
A.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1B.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{80}$=1D.$\frac{{x}^{2}}{80}$-$\frac{{y}^{2}}{20}$=1

分析 由題意可得2c=10,即c=5,由一條漸近線的斜率為2,可得$\frac{a}$=2,可得a,b的方程組,解得a,b,即可得到所求雙曲線的標準方程.

解答 解:由題意可得2c=10,即c=5,
由一條漸近線的斜率為2,可得$\frac{a}$=2,
又a2+b2=25,
解得a=$\sqrt{5}$,b=2$\sqrt{5}$,
即有雙曲線的方程為$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1.
故選:A.

點評 本題考查雙曲線的方程的求法,注意運用漸近線的斜率和a,b,c的關系,考查運算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知復數(shù)z滿足z•(1+2i6)=$\frac{2-3i}{i}$,(i為虛數(shù)單位),則復數(shù)z的虛部為( 。
A.-2B.2C.2iD.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{y≥1-x}\\{y<1+x}\\{x≤2}\\{\;}\end{array}\right.$,則目標函數(shù)Z=x+y取不到的值為( 。
A.1B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.過定點A(1,1)作直線l與雙曲線x2-$\frac{{y}^{2}}{2}$=1交于P、Q兩點,若A(1,1)是線段段PQ的中點,這樣的直線存在嗎?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左焦點在拋物線y2=20x的準線上,且雙曲線的一條漸近線的斜率為$\frac{4}{3}$,則雙曲線的標準方程是( 。
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知質(zhì)數(shù)p,q滿足q5-2p2=1,則p+q=14.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在△ABC中,設$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow{AC}$=$\overrightarrow{{e}_{2}}$,D,E是邊BC的三等分點,點D靠近點B,則$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{{e}_{2}}$+$\frac{2}{3}$$\overrightarrow{{e}_{1}}$,$\overrightarrow{AE}$=$\frac{1}{3}$$\overrightarrow{{e}_{1}}$+$\frac{2}{3}$$\overrightarrow{{e}_{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.執(zhí)行如圖的程序框圖,如果輸出結(jié)果為2,則輸入的x=( 。
A.0B.2C.4D.0或4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知復數(shù)z=2-3i,$\overline{z}$表示復數(shù)z的共軛復數(shù),則|$\frac{\overline{z}}{i+{i}^{2}}$|=$\frac{\sqrt{26}}{2}$.

查看答案和解析>>

同步練習冊答案