已知兩條直線y=ax-2和y=(a+2)x+1互相垂直,則a等于________.
-1
因為兩條直線垂直,所以a(a+2)=-1,
即a2+2a+1=0,所以a=-1.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分16分)本題共3個小題,第1小題滿分3分,第2小題滿分5分,第3小題滿分8分.
在平面直角坐標系中,對于直線和點<0,則稱點被直線分隔.若曲線C與直線沒有公共點,且曲線C上存在點被直線分隔,則稱直線為曲線C的一條分隔線.
⑴求證:點被直線分隔;
⑵若直線是曲線的分隔線,求實數(shù)的取值范圍;
⑶動點M到點的距離與到軸的距離之積為1,設點M的軌跡為E,求證:通過原點的直線中,有且僅有一條直線是E的分割線.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左右焦點分別為,短軸兩個端點為,且四邊形是邊長為2的正方形.
(1)求橢圓的方程;
(2)若分別是橢圓長軸的左右端點,動點滿足,連接,交橢圓于點.證明:為定值;
(3)在(2)的條件下,試問軸上是否存在異于點的定點,使得以為直徑的圓恒過直線的交點,若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線與直線平行,則的值為(    )
A.2B.-2C.18D.-18

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓C1和拋物線C2的焦點均在軸上,C1的中心和C2的頂點均為原點,從每條曲線上各取兩點,將其坐標記錄于下表中:

3
-2
4



0
-4

 
(1)求曲線C1,C2的標準方程;
(2)設直線與橢圓C1交于不同兩點M、N,且。請問是否存在直線過拋物線C2的焦點F?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求經(jīng)過兩直線的交點且與直線垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

直線L經(jīng)過點,且被兩直線L1和 L2截得的線段AB中點恰好是點P,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設點A(-2,3),B(3,2),若直線ax+y+2=0與線段AB沒有交點,則a的取值范圍是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過點P(1,1)的直線,將圓形區(qū)域{(x,y)|x2+y2≤4}分為兩部分,使得這兩部分的面積之差最大,則該直線的方程為________.

查看答案和解析>>

同步練習冊答案