規(guī)定,其中,是正整數(shù),且,這是組合數(shù)(、是正整數(shù),且)的一種推廣.如當(dāng)=-5時,
(1)求的值;
(2)設(shè)x>0,當(dāng)x為何值時,取得最小值?
(3)組合數(shù)的兩個性質(zhì);
①. 、.
是否都能推廣到(,是正整數(shù))的情形?若能推廣,則寫出推廣的形式并給出證明;若不能,則說明理由.
(1) ; (2)當(dāng)時,取得最小值;(3)性質(zhì)②能推廣,它的推廣形式是,,是正整數(shù).
解析試題分析:(1)利用類比法即可求解==-680為多少,(2)先求得關(guān)于x的解析式,然后利用基本不等式求解;(3)考察的是大家對排列組合的理解和應(yīng)用.
試題解析:(1)
(2) 6分
∵ x > 0 , 當(dāng)且僅當(dāng)時,等號成立.
∴ 當(dāng)時,取得最小值. 8分
(3)性質(zhì)①不能推廣,例如當(dāng)時,有定義,但無意義; 10分
性質(zhì)②能推廣,它的推廣形式是,,是正整數(shù). 12分
事實上,當(dāng)m=1時,有.
當(dāng)m≥2時.
. 14分
考點:1,排列的公式2,基本不等式,3,規(guī)納總結(jié)方法的應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
有4名同學(xué)參加唱歌、跳舞、下棋三項比賽,每項比賽至少有1人參加,每名同學(xué)只參加一項比賽,另外甲同學(xué)不能參加跳舞比賽,則不同的參賽方案的種數(shù)為_____(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知的展開式中前三項的系數(shù)成等差數(shù)列.
(1)求n的值; (2)求展開式中系數(shù)最大的項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知的展開式的二項式系數(shù)的和比(3x-1)n的展開式的二項式系數(shù)和大992,求(2x-)2n的展開式中,(1)二項式系數(shù)最大的項;(2)系數(shù)的絕對值最大的項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
由數(shù)字1、2、3、4、5、6組成無重復(fù)數(shù)字的數(shù)中,求:
(1)六位偶數(shù)的個數(shù);
(2)求三個偶數(shù)互不相鄰的六位數(shù)的個數(shù);
(3)求恰有兩個偶數(shù)相鄰的六位數(shù)的個數(shù);
(4)奇數(shù)字從左到右,從小到大依次排列的六位數(shù)的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com