已知定義域為R的函數(shù)f(x)滿足:f(4)=-3,且對任意x∈R總有f′(x)<3,則不等式f(x)<3x-15的解集為(  )

A.(-∞,4)

B.(-∞,-4)

C.(-∞,-4)∪(4,+∞)

D.(4,+∞)

 

D

【解析】方法一 (數(shù)形結合法):

由題意知,f(x)過定點(4,-3),且斜率k=f′(x)<3.

又y=3x-15過點(4,-3),k=3,

∴y=f(x)和y=3x-15在同一坐標系中的草圖如圖,

∴f(x)<3x-15的解集為(4,+∞),故選D.

方法二 記g(x)=f(x)-3x+15,

則g′(x)=f′(x)-3<0,可知g(x)在R上為減函數(shù).

又g(4)=f(4)-3×4+15=0,

∴f(x)<3x-15可化為f(x)-3x+15<0,

即g(x)<g(4),結合其函數(shù)單調(diào)性,故得x>4.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014高考名師推薦數(shù)學文科幾何概型(解析版) 題型:選擇題

如圖所示,在邊長為l的正方形OABC中任取一點P,則點P恰好取自陰影部分的

概率為(   )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014高考名師推薦數(shù)學文科三角函數(shù)的圖像、最值、單調(diào)性、對稱性(解析版) 題型:選擇題

函數(shù)的最大值與最小值之和為(    )

A.

B. 0

C. -1

D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014高考名師推薦數(shù)學文科y=Asinwx+圖像(解析版) 題型:選擇題

已知函數(shù)的圖象由的圖象向右平移個單位得到,這兩個函數(shù)的部分圖象如圖所示,則的值為(    )

A.

B.

C.

D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學考前復習沖刺穿插滾動練習(四)(解析版) 題型:解答題

如圖,已知平行四邊形ABCD中,BC=6,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點.

(1)求證:GH∥平面CDE;

(2)若CD=2,DB=4,求四棱錐F—ABCD的體積.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學考前復習沖刺穿插滾動練習(四)(解析版) 題型:選擇題

如圖所示,在四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構成三棱錐A—BCD,則在三棱錐A—BCD中,下列命題正確的是(  )

A.平面ABD⊥平面ABC

B.平面ADC⊥平面BDC

C.平面ABC⊥平面BDC

D.平面ADC⊥平面ABC

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學考前復習沖刺穿插滾動練習(六)(解析版) 題型:解答題

已知函數(shù)f(x)=aln x-ax-3(a∈R).

(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若函數(shù)y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數(shù)g(x)=x3+x2(f′(x)是f(x)的導數(shù))在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;

(3)求證:×…×<(n≥2,n∈N*).

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學考前復習沖刺穿插滾動練習(六)(解析版) 題型:選擇題

設m、n是不同的直線,α、β是不同的平面,下列四個命題中正確的是(  )

A.若m∥α,n∥α,則m∥n

B.若m⊥β,n⊥β,則m∥n

C.若α⊥β,m?α,則m⊥β

D.若m?α,n?α,m∥β,n∥β,則α∥β

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學考前復習沖刺穿插滾動練習(二)(解析版) 題型:選擇題

設向量a=(1,x-1),b=(x+1,3),則“x=2”是“a∥b”的(  )

A.充分但不必要條件

B.必要但不充分條件

C.充要條件

D.既不充分也不必要條件

 

查看答案和解析>>

同步練習冊答案