9.一個(gè)袋中裝有5個(gè)球,編號(hào)為1,2,3,4,5,從中任取3個(gè),用ξ表示取出的3個(gè)球中最大編號(hào),則Eξ=4.5.

分析 由題意得ξ的可能取值為3,4,5,分別求出相應(yīng)的概率,由此能求出Eξ.

解答 解:∵一個(gè)袋中裝有5個(gè)球,編號(hào)為1,2,3,4,5,從中任取3個(gè),
用ξ表示取出的3個(gè)球中最大編號(hào),
∴ξ的可能取值為3,4,5,
P(ξ=3)=$\frac{{C}_{3}^{3}}{{C}_{5}^{3}}$=$\frac{1}{10}$,
P(ξ=4)=$\frac{{C}_{3}^{2}{C}_{1}^{1}}{{C}_{5}^{3}}$=$\frac{3}{10}$,
P(ξ=5)=$\frac{{C}_{4}^{2}{C}_{1}^{1}}{{C}_{5}^{3}}$=$\frac{6}{10}$,
∴Eξ=$3×\frac{1}{10}+4×\frac{3}{10}+5×\frac{6}{10}$=4.5.
故答案為:4.5.

點(diǎn)評(píng) 本題考查離散型隨機(jī)變量的分布列的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意排列組合知識(shí)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.將邊長為1的正方形AA1O1O(及其內(nèi)部)繞OO1旋轉(zhuǎn)一周形成圓柱,如圖,$\widehat{AC}$長為$\frac{5π}{6}$,$\widehat{{A}_{1}{B}_{1}}$長為$\frac{π}{3}$,其中B1與C在平面AA1O1O的同側(cè).
(1)求圓柱的體積與側(cè)面積;
(2)求異面直線O1B1與OC所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=4-t}\\{y=\sqrt{3}t}\end{array}\right.$(t為參數(shù)).在以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線C2的極坐標(biāo)方程為ρ=2sin(θ+$\frac{5π}{6}$).
(I)求曲線C1的普通方程,曲線C2的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn)P,Q分別在曲線C1、C2上,求|PQ|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知直線l:$\left\{\begin{array}{l}{x=\sqrt{3}+tcosα}\\{y=tsinα}\end{array}\right.$(t為參致)與圓C:$\left\{\begin{array}{l}{x=cosθ}\\{y=1+sinθ}\end{array}\right.$(θ為參數(shù))相切.則α=0或$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知方程$\left\{\begin{array}{l}{x=t+\frac{s}{t}}\\{y=t-\frac{s}{t}}\end{array}\right.$(s,t∈R,且s>0,t>0).若以s為常數(shù)、t為參數(shù)的方程表示曲線C1;以t為常數(shù)、s為參數(shù)的方程表示曲線C2,那么C1,C2依次為雙曲線,直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)m,n∈(0,+∞),求證:$\frac{mn}{m+n}$$≤\frac{\sqrt{mn}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.點(diǎn)P在△ABC的邊BC所在直線上,且滿足$\overrightarrow{AP$=2m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m,n∈R),則在平面直角坐標(biāo)系中,動(dòng)點(diǎn)Q(m+n,m-n)的軌跡的普通方程為3x+y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知a、b、c都是正數(shù),求證:
(I)$\frac{^{2}}{a}$$+\frac{{c}^{2}}$$+\frac{{a}^{2}}{c}$≥a十b+c;
(2)2($\frac{a+b}{2}$-$\sqrt{ab}$≤3($\frac{a+b+c}{3}$-$\root{3}{abc}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.證明不等式:$\frac{x}{\sqrt{y}}$+$\frac{y}{\sqrt{x}}$≥$\sqrt{x}$+$\sqrt{y}$(其中x,y皆為正數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案