19.證明不等式:$\frac{x}{\sqrt{y}}$+$\frac{y}{\sqrt{x}}$≥$\sqrt{x}$+$\sqrt{y}$(其中x,y皆為正數(shù)).

分析 運用分析法證明,可在不等式的兩邊乘以$\sqrt{xy}$,作差,因式分解,討論x,y的大小,即可得證.

解答 證明:因為x,y皆為正數(shù),
所以原不等式等價于($\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}$)$\sqrt{xy}$≥($\sqrt{x}+\sqrt{y}$)$\sqrt{xy}$,
即x$\sqrt{x}$+y$\sqrt{y}$≥x$\sqrt{y}$+y$\sqrt{x}$,整理得($\sqrt{x}-\sqrt{y}$)(x-y)≥0.
當(dāng)x-y≥0時,x≥y,則$\sqrt{x}$≥$\sqrt{y}$,$\sqrt{x}$-$\sqrt{y}$≥0,所以上式成立;
當(dāng)x-y≤0時,x≤y,則$\sqrt{x}$≤$\sqrt{y}$,$\sqrt{x}$-$\sqrt{y}$≤0,上式也成立.
綜上知,原不等式成立.

點評 本題考查不等式的證明,注意運用分析法證明,考查推理能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.一個袋中裝有5個球,編號為1,2,3,4,5,從中任取3個,用ξ表示取出的3個球中最大編號,則Eξ=4.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.有一種密碼,明文由三個字母組成,密碼由明文的這三個字母對應(yīng)的五個數(shù)字組成.編碼規(guī)則如下表.明文由表中每一排取一個字母組成,且第一排取的字母放在第一位,第二排取的字母放在第二位,第三排取的字母放在第三位,對應(yīng)的密碼由明文所取的三個字母對應(yīng)的數(shù)字按相同的次序排成一組組成.(如:明文取的三個字母為AFP,則與它對應(yīng)的五個數(shù)字(密碼)就為11223)
第一排明文字母ABC
密碼數(shù)字111213
第二排明文字母EFG
密碼數(shù)字212223
第三排明文字母MNP
密碼數(shù)字123
(1)假設(shè)密碼是11211,求這個密碼對應(yīng)的明文;
(2)設(shè)隨機(jī)變量ξ表示密碼中所含不同數(shù)字的個數(shù).
①求P(ξ=2);
②求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.甲、乙兩袋中各裝有大小相同的小球9個,其中甲袋中紅色、黑色、白色小球的個數(shù)分別為2,3,4,乙袋中紅色、黑色、白色小球的個數(shù)均為3,某人用左右手分別從甲、乙兩袋中取球.
(1)若左右手各取一球,求兩只手中所取的球顏色不同的概率;
(2)若左右手依次各取兩球,稱同一手中兩球顏色相同的取法為成功取法,記兩次取球(左右手依次各取兩球為兩次取球)的成功取法次數(shù)為隨機(jī)變量X,求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,已知sinA=2cosB•sinC,則△ABC的形狀是( 。
A.直角三角形B.等腰三角形C.等腰直角三角形D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)Sk=$\frac{1}{k+2}$+$\frac{1}{k+3}$+$\frac{1}{k+4}$+…+$\frac{1}{2k-1}$(k≥3,k∈N*),則Sk+1=( 。
A.Sk+$\frac{1}{2k+1}$B.Sk+$\frac{1}{2k}$+$\frac{1}{2k+1}$
C.Sk+$\frac{1}{2k}$+$\frac{1}{2k+1}$-$\frac{1}{k+2}$D.Sk-$\frac{1}{2k}$-$\frac{1}{2k+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.?dāng)?shù)列{an}中,a1=1,Sn表示前n項和,且Sn,Sn+1,2S1成等差數(shù)列.
(1)計算S1,S2,S3的值;
(2)根據(jù)以上結(jié)果猜測Sn的表達(dá)式,并用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某職業(yè)學(xué)校有2000名學(xué)生,校服務(wù)部為了解學(xué)生在校的月消費情況,隨機(jī)調(diào)查了100名學(xué)生,并將統(tǒng)計結(jié)果繪成直方圖如圖:
(Ⅰ)試估計該校學(xué)生在校月消費的平均數(shù);
(Ⅱ)根據(jù)校服務(wù)部以往的經(jīng)驗,每個學(xué)生在校的月消費金額x(元)和服務(wù)部可獲得利潤y(元),滿足關(guān)系式:$y=\left\{\begin{array}{l}20,\;\;\;200≤x<400\\ 40,\;\;400≤x<800\\ 80,\;\;800≤x≤1200.\end{array}\right.$根據(jù)以上抽樣調(diào)查數(shù)據(jù),將頻率視為概率,回答下列問題:
(。⿲τ谌我庖粋學(xué)生,校服務(wù)部可獲得的利潤記為ξ,求ξ的分布列及數(shù)學(xué)期望.
(ⅱ)若校服務(wù)部計劃每月預(yù)留月利潤的$\frac{2}{9}$,用于資助在校月消費低于400元的學(xué)生,那么受資助的學(xué)生每人每月可獲得多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知a,b,c∈R+,求證:$\frac{bc}{a}$+$\frac{ac}$+$\frac{ab}{c}$≥a+b+c.

查看答案和解析>>

同步練習(xí)冊答案