已知橢圓E:+y2=1(a>1)的上頂點(diǎn)為M(0,1),兩條過(guò)M的動(dòng)弦MA、MB滿(mǎn)足MA⊥MB.

(1)當(dāng)坐標(biāo)原點(diǎn)到橢圓E的準(zhǔn)線(xiàn)距離最短時(shí),求橢圓E的方程;

(2)若Rt△MAB面積的最大值為,求a;

(3)對(duì)于給定的實(shí)數(shù)a(a>1),動(dòng)直線(xiàn)AB是否經(jīng)過(guò)一定點(diǎn)?如果經(jīng)過(guò),求出定點(diǎn)坐標(biāo)(用a表示);反之,說(shuō)明理由.

 

(1)+y2=1.(2)a=3(3)

【解析】(1)由題,a2=c2+1,d==c+≥2,當(dāng)c=1時(shí)取等號(hào),此時(shí)a2=1+1=2,故橢圓E的方程為+y2=1.

(2)不妨設(shè)直線(xiàn)MA的斜率k>0,直線(xiàn)MA方程為y=kx+1,由

①代入②整理得(a2k2+1)x2+2a2kx=0,

解得xA=-,故A,

由MA⊥MB知直線(xiàn)MB的斜率為-,可得B,

則MA=,MB=.

則S△MAB=MA·MB=(1+k2)

.

令k+=t(t≥2),

則S△MAB=.

當(dāng)t=時(shí)取“=”,∵t=≥2,得a>+1.而(S△MAB)max=,故a=3或a=(舍).綜上a=3.

(3)由對(duì)稱(chēng)性,若存在定點(diǎn),則必在y軸上.

當(dāng)k=1時(shí),A,直線(xiàn)AB過(guò)定點(diǎn)Q.下面證明A、Q、B三點(diǎn)共線(xiàn):

∵kAQ=,

kBQ=.

由kAQ=kBQ知A、Q、B三點(diǎn)共線(xiàn),即直線(xiàn)AB過(guò)定點(diǎn)Q.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第5課時(shí)練習(xí)卷(解析版) 題型:填空題

直線(xiàn)y=kx+3與圓(x-2)2+(y-3)2=4相交于M,N兩點(diǎn),若MN≥2,則k的取值范圍是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第3課時(shí)練習(xí)卷(解析版) 題型:解答題

已知△ABC的兩個(gè)頂點(diǎn)A(-1,5)和B(0,-1),又知∠C的平分線(xiàn)所在的直線(xiàn)方程為2x-3y+6=0,求三角形各邊所在直線(xiàn)的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第3課時(shí)練習(xí)卷(解析版) 題型:解答題

兩條直線(xiàn)l1:(m+3)x+2y=5-3m,l2:4x+(5+m)y=16,分別求滿(mǎn)足下列條件的m的值.

(1) l1與l2相交;

(2) l1與l2平行;

(3) l1與l2重合;

(4) l1與l2垂直.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第11課時(shí)練習(xí)卷(解析版) 題型:解答題

已知橢圓C的方程為=1(a>b>0),雙曲線(xiàn)=1的兩條漸近線(xiàn)為l1、l2,過(guò)橢圓C的右焦點(diǎn)F作直線(xiàn)l,使l⊥l1.又l與l2交于P點(diǎn),設(shè)l與橢圓C的兩個(gè)交點(diǎn)由上至下依次為A、B(如圖).

(1)當(dāng)l1與l2夾角為60°,雙曲線(xiàn)的焦距為4時(shí),求橢圓C的方程;

(2)當(dāng)=λ,求λ的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第11課時(shí)練習(xí)卷(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,已知定點(diǎn)A(-4,0)、B(4,0),動(dòng)點(diǎn)P與A、B連線(xiàn)的斜率之積為-.

(1)求點(diǎn)P的軌跡方程;

(2)設(shè)點(diǎn)P的軌跡與y軸負(fù)半軸交于點(diǎn)C.半徑為r的圓M的圓心M在線(xiàn)段AC的垂直平分線(xiàn)上,且在y軸右側(cè),圓M被y軸截得的弦長(zhǎng)為r.

(ⅰ)求圓M的方程;

(ⅱ)當(dāng)r變化時(shí),是否存在定直線(xiàn)l與動(dòng)圓M均相切?如果存在,求出定直線(xiàn)l的方程;如果不存在,說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第11課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,橢圓C:=1(a>b>0)的離心率為,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為.不過(guò)原點(diǎn)O的直線(xiàn)l與C相交于A,B兩點(diǎn),且線(xiàn)段AB被直線(xiàn)OP平分.

(1)求橢圓C的方程;

(2)求△ABP面積取最大值時(shí)直線(xiàn)l的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第10課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,已知橢圓=1的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F.設(shè)過(guò)點(diǎn)T(t,m)的直線(xiàn)TA、TB與橢圓分別交于點(diǎn)M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.

(1)設(shè)動(dòng)點(diǎn)P滿(mǎn)足PF2-PB2=4,求點(diǎn)P的軌跡;

(2)設(shè)x1=2,x2=,求點(diǎn)T的坐標(biāo);

(3)設(shè)t=9,求證:直線(xiàn)MN必過(guò)x軸上的一定點(diǎn)(其坐標(biāo)與m無(wú)關(guān)).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年陜西西工大附中高三上學(xué)期第四次適應(yīng)性訓(xùn)練文數(shù)學(xué)卷(解析版) 題型:填空題

正方體的外接球與內(nèi)切球的表面積的比值為_(kāi)______.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案