某公司位員工的月工資(單位:元)為,…,,其均值和方差分別為,若從下月起每位員工的月工資增加元,則這位員工下月工資的均值和方差分別為(    )

A., B., 
C. D., 

解析試題分析:由題得:
若從下月起每位員工的月工資增加元,則這位員工下月工資的均值和方差分別為:
均值

方差

故選
考點:均值和方差.  

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:單選題

某醫(yī)療研究所為了檢驗新開發(fā)的流感疫苗對甲型H1N1流感的預防作用,把1000名注射了疫苗的人與另外1000名未注射疫苗的人的半年的感冒記錄作比較,提出假設:“這種疫苗不能起到預防甲型H1N1流感的作用”,并計算出,則下列說法正確的(    )

A.這種疫苗能起到預防甲型H1N1流感的有效率為1%
B.若某人未使用該疫苗,則他在半年中有99%的可能性得甲型H1N1
C.有1%的把握認為“這種疫苗能起到預防甲型H1N1流感的作用”
D.有99%的把握認為“這種疫苗能起到預防甲型H1N1流感的作用”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設某大學的女生體重(單位:)與身高(單位:)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù),用最小二乘法建立的回歸方程為,則下列結論中不正確的是(    )

A.具有正的線性相關關系
B.回歸直線過樣本點的中心
C.若該大學某女生身高增加lcm,則其體重約增加0.85kg
D.若該大學某女生身高為170cm,則可斷定其體重必為58.79kg

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

若對于預報變量y與解釋變量x的10組統(tǒng)計數(shù)據(jù)的回歸模型中,計算R2=0.95,又知殘差平方和為120.55,那么的值為( )

A.241.1 B.245.1 C.2411 D.2451

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

某中學有高中生3500人,初中生1500人,為了解學生的學習情況,用分層抽樣的方法從該校學生中抽取一個容量為的樣本,已知從高中生中抽取70人,則為(  )

A.100B.150C.200D.250

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

獨立性檢驗中,假設H0:變量X與變量Y沒有關系,則在H0成立的情況下,P(K2≥6.635)≈0.010表示的意義是( )

A.在犯錯誤的概率不超過0.1%的前提下,認為“變量X與變量Y有關”
B.在犯錯誤的概率不超過0.1%的前提下,認為“變量X與變量Y無關”
C.有99%以上的把握認為“變量X與變量Y無關”
D.有99%以上的把握認為“變量X與變量Y有關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

某校選修乒乓球課程的學生中,高一年級有30名,高二年級有40名.現(xiàn)用分層抽樣的方法在這70名學生中抽取一個樣本,已知在高一年級的學生中抽取了6名,則在高二年級的學生中應抽取的人數(shù)為(  )

A.6 B.8 C.10 D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

為了研究某藥品的療效,選取若干名志愿者進行臨床試驗,所有志愿者的舒張壓數(shù)據(jù)(單位:kPa)的分組區(qū)間為[12,13),[13,14),[14,15),[15,16),[16,17],將其按從左到右的順序分別編號為第一組,第二組,,第五組,右圖是根據(jù)試驗數(shù)據(jù)制成的頻率分布直方圖,已知第一組與第二組共有20人,第三組中沒有療效的有6人,則第三組中有療效的人數(shù)為(    )

A.6 B.8 C.12 D.18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

[2013·安徽高考]某班級有50名學生,其中有30名男生和20名女生.隨機詢問了該班五名男生和五名女生在某次數(shù)學測驗中的成績,五名男生的成績分別為86,94,88,92,90,五名女生的成績分別為88,93,93,88,93.下列說法一定正確的是(  )

A.這種抽樣方法是一種分層抽樣
B.這種抽樣方法是一種系統(tǒng)抽樣
C.這五名男生成績的方差大于這五名女生成績的方差
D.該班男生成績的平均數(shù)小于該班女生成績的平均數(shù)

查看答案和解析>>

同步練習冊答案